光纤中飞秒孤子的量子理论

F. Singer, M. Potasek, M. Teich
{"title":"光纤中飞秒孤子的量子理论","authors":"F. Singer, M. Potasek, M. Teich","doi":"10.1088/0954-8998/4/3/003","DOIUrl":null,"url":null,"abstract":"The authors use the time-dependent Hartree approximation to obtain the solution to the quantum higher-order non-linear Schrodinger equation. This equation describes femtosecond pulses propagating in non-linear optical fibres and can have soliton solutions. These solitons travel at velocities that differ from the picosecond solitons obtained from the standard quantum non-linear Schrodinger equation. The authors find that these femtosecond solitons cannot propagate in graded-index fibres; rather, they require quadrupole-clad fibres. This is the first investigation of quantum effects in femtosecond solitons to the authors' knowledge.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum theory of femtosecond solitons in optical fibres\",\"authors\":\"F. Singer, M. Potasek, M. Teich\",\"doi\":\"10.1088/0954-8998/4/3/003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors use the time-dependent Hartree approximation to obtain the solution to the quantum higher-order non-linear Schrodinger equation. This equation describes femtosecond pulses propagating in non-linear optical fibres and can have soliton solutions. These solitons travel at velocities that differ from the picosecond solitons obtained from the standard quantum non-linear Schrodinger equation. The authors find that these femtosecond solitons cannot propagate in graded-index fibres; rather, they require quadrupole-clad fibres. This is the first investigation of quantum effects in femtosecond solitons to the authors' knowledge.\",\"PeriodicalId\":130003,\"journal\":{\"name\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0954-8998/4/3/003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Optics: Journal of The European Optical Society Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0954-8998/4/3/003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作者利用时变Hartree近似得到了量子高阶非线性薛定谔方程的解。这个方程描述了在非线性光纤中传播的飞秒脉冲,并且可以有孤子解。这些孤子以不同于从标准量子非线性薛定谔方程得到的皮秒孤子的速度行进。作者发现这些飞秒孤子不能在渐变折射率光纤中传播;相反,它们需要四极包覆的纤维。据作者所知,这是第一次对飞秒孤子中的量子效应进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum theory of femtosecond solitons in optical fibres
The authors use the time-dependent Hartree approximation to obtain the solution to the quantum higher-order non-linear Schrodinger equation. This equation describes femtosecond pulses propagating in non-linear optical fibres and can have soliton solutions. These solitons travel at velocities that differ from the picosecond solitons obtained from the standard quantum non-linear Schrodinger equation. The authors find that these femtosecond solitons cannot propagate in graded-index fibres; rather, they require quadrupole-clad fibres. This is the first investigation of quantum effects in femtosecond solitons to the authors' knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信