基于无穷方差分析的分数阶时频自回归参数估计

Cao Ying, Yuan Qingshan, Zeng Lili
{"title":"基于无穷方差分析的分数阶时频自回归参数估计","authors":"Cao Ying, Yuan Qingshan, Zeng Lili","doi":"10.2174/1874444301507012083","DOIUrl":null,"url":null,"abstract":"The Parameter model analysis algorithms include autoregressive (AR) model, moving average (MA) and auto- regressive moving average (ARMA) model. The existing TFAR model is improved, the new fractional low order time- frequency autoregressive (FLO-TFAR) model and the concept of generalized TF-Yule-Walker equation are proposed, fractional low-order covariance is preferred instead of autocorrelation in the model; The parameter estimation of the mod- el is derived, spectrum estimation algorithm based on the FLO-TFAR model is presented, and the steps of the algorithm are summarized. The detailed comparison of the FLO-TFAR S Sα model based on fractional low order moment (FLOM) and the Gaussian TFAR model based on autocorrelation is done. Simulation shows that the proposed FLO-TFAR algo- rithm can carry out high-resolution spectrum estimation, provides better performance than the TFAR algorithm, and is ro- bust.","PeriodicalId":153592,"journal":{"name":"The Open Automation and Control Systems Journal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Estimation of Fractional Low Order Time-Frequency Autoregressive Based on Infinite Variance Analysis\",\"authors\":\"Cao Ying, Yuan Qingshan, Zeng Lili\",\"doi\":\"10.2174/1874444301507012083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Parameter model analysis algorithms include autoregressive (AR) model, moving average (MA) and auto- regressive moving average (ARMA) model. The existing TFAR model is improved, the new fractional low order time- frequency autoregressive (FLO-TFAR) model and the concept of generalized TF-Yule-Walker equation are proposed, fractional low-order covariance is preferred instead of autocorrelation in the model; The parameter estimation of the mod- el is derived, spectrum estimation algorithm based on the FLO-TFAR model is presented, and the steps of the algorithm are summarized. The detailed comparison of the FLO-TFAR S Sα model based on fractional low order moment (FLOM) and the Gaussian TFAR model based on autocorrelation is done. Simulation shows that the proposed FLO-TFAR algo- rithm can carry out high-resolution spectrum estimation, provides better performance than the TFAR algorithm, and is ro- bust.\",\"PeriodicalId\":153592,\"journal\":{\"name\":\"The Open Automation and Control Systems Journal\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Automation and Control Systems Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874444301507012083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Automation and Control Systems Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874444301507012083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

参数模型分析算法包括自回归(AR)模型、移动平均(MA)模型和自回归移动平均(ARMA)模型。对现有的TFAR模型进行了改进,提出了新的分数阶低阶时频自回归(FLO-TFAR)模型和广义TF-Yule-Walker方程的概念,在模型中优先采用分数阶低阶协方差代替自相关;推导了模型的参数估计,提出了基于FLO-TFAR模型的频谱估计算法,并对算法的步骤进行了总结。对基于分数阶低阶矩(flm)的FLO-TFAR S Sα模型和基于自相关的高斯TFAR模型进行了详细的比较。仿真结果表明,该算法能够进行高分辨率的频谱估计,具有比TFAR算法更好的性能和抗干扰性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimation of Fractional Low Order Time-Frequency Autoregressive Based on Infinite Variance Analysis
The Parameter model analysis algorithms include autoregressive (AR) model, moving average (MA) and auto- regressive moving average (ARMA) model. The existing TFAR model is improved, the new fractional low order time- frequency autoregressive (FLO-TFAR) model and the concept of generalized TF-Yule-Walker equation are proposed, fractional low-order covariance is preferred instead of autocorrelation in the model; The parameter estimation of the mod- el is derived, spectrum estimation algorithm based on the FLO-TFAR model is presented, and the steps of the algorithm are summarized. The detailed comparison of the FLO-TFAR S Sα model based on fractional low order moment (FLOM) and the Gaussian TFAR model based on autocorrelation is done. Simulation shows that the proposed FLO-TFAR algo- rithm can carry out high-resolution spectrum estimation, provides better performance than the TFAR algorithm, and is ro- bust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信