BoDBES:一个基于字典的生物医学实体识别器

Min Song, Wook-Shin Han, Hwanjo Yu
{"title":"BoDBES:一个基于字典的生物医学实体识别器","authors":"Min Song, Wook-Shin Han, Hwanjo Yu","doi":"10.1145/2512089.2512098","DOIUrl":null,"url":null,"abstract":"To measure the impact of the difference sources on the performance of entity extraction, we used three different data sources: 1) GENIA, 2) Mesh Tree, and 3) UMLS. The performance is also measured by F1. In the performance comparision among three approaches on the dictionary with GENIA+MeSH, BoDBES is slightly better than SPED in all three datasets whereas the context only option shows the worst performance.","PeriodicalId":143937,"journal":{"name":"Data and Text Mining in Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"BoDBES: a boosted dictionary-based biomedical entity spotter\",\"authors\":\"Min Song, Wook-Shin Han, Hwanjo Yu\",\"doi\":\"10.1145/2512089.2512098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To measure the impact of the difference sources on the performance of entity extraction, we used three different data sources: 1) GENIA, 2) Mesh Tree, and 3) UMLS. The performance is also measured by F1. In the performance comparision among three approaches on the dictionary with GENIA+MeSH, BoDBES is slightly better than SPED in all three datasets whereas the context only option shows the worst performance.\",\"PeriodicalId\":143937,\"journal\":{\"name\":\"Data and Text Mining in Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data and Text Mining in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2512089.2512098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and Text Mining in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2512089.2512098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了衡量不同数据源对实体提取性能的影响,我们使用了三种不同的数据源:1)GENIA, 2) Mesh Tree和3)UMLS。性能也由F1来衡量。在使用GENIA+MeSH的三种方法在字典上的性能比较中,BoDBES在所有三个数据集上都略好于SPED,而仅使用上下文的方法表现出最差的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BoDBES: a boosted dictionary-based biomedical entity spotter
To measure the impact of the difference sources on the performance of entity extraction, we used three different data sources: 1) GENIA, 2) Mesh Tree, and 3) UMLS. The performance is also measured by F1. In the performance comparision among three approaches on the dictionary with GENIA+MeSH, BoDBES is slightly better than SPED in all three datasets whereas the context only option shows the worst performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信