随机全局优化问题群迁移算法的实验研究

{"title":"随机全局优化问题群迁移算法的实验研究","authors":"","doi":"10.4018/ijdai.296389","DOIUrl":null,"url":null,"abstract":"Complex computational problems are occurrences in our daily lives that needs to be analysed effectively in order to make meaningful and informed decision. This study performs empirical analysis into the performance of six optimisation algorithms based on swarm intelligence on nine well known stochastic and global optimisation problems, with the aim of identifying a technique that returns an optimum output on some selected benchmark techniques. Extensive experiments show that, Multi-Swarm and Pigeon inspired optimisation algorithm outperformed Particle Swarm, Firefly and Evolutionary optimizations in both convergence speed and global solution. The algorithms adopted in this paper gives an indication of which algorithmic solution presents optimal results for a problem in terms of quality of performance, precision and efficiency.","PeriodicalId":176325,"journal":{"name":"International Journal of Distributed Artificial Intelligence","volume":"606 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Swarm Migration Algorithms on Stochastic and Global Optimisation Problem\",\"authors\":\"\",\"doi\":\"10.4018/ijdai.296389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex computational problems are occurrences in our daily lives that needs to be analysed effectively in order to make meaningful and informed decision. This study performs empirical analysis into the performance of six optimisation algorithms based on swarm intelligence on nine well known stochastic and global optimisation problems, with the aim of identifying a technique that returns an optimum output on some selected benchmark techniques. Extensive experiments show that, Multi-Swarm and Pigeon inspired optimisation algorithm outperformed Particle Swarm, Firefly and Evolutionary optimizations in both convergence speed and global solution. The algorithms adopted in this paper gives an indication of which algorithmic solution presents optimal results for a problem in terms of quality of performance, precision and efficiency.\",\"PeriodicalId\":176325,\"journal\":{\"name\":\"International Journal of Distributed Artificial Intelligence\",\"volume\":\"606 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdai.296389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdai.296389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复杂的计算问题发生在我们的日常生活中,需要进行有效的分析,以便做出有意义和明智的决策。本研究对基于群体智能的六种优化算法在九个众所周知的随机和全局优化问题上的性能进行了实证分析,目的是确定一种在一些选定的基准技术上返回最佳输出的技术。大量的实验表明,Multi-Swarm和Pigeon启发的优化算法在收敛速度和全局解方面都优于Particle Swarm、Firefly和Evolutionary优化算法。本文所采用的算法给出了在性能质量、精度和效率方面哪一种算法解对某一问题具有最优结果的指示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study of Swarm Migration Algorithms on Stochastic and Global Optimisation Problem
Complex computational problems are occurrences in our daily lives that needs to be analysed effectively in order to make meaningful and informed decision. This study performs empirical analysis into the performance of six optimisation algorithms based on swarm intelligence on nine well known stochastic and global optimisation problems, with the aim of identifying a technique that returns an optimum output on some selected benchmark techniques. Extensive experiments show that, Multi-Swarm and Pigeon inspired optimisation algorithm outperformed Particle Swarm, Firefly and Evolutionary optimizations in both convergence speed and global solution. The algorithms adopted in this paper gives an indication of which algorithmic solution presents optimal results for a problem in terms of quality of performance, precision and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信