为什么在估计分布算法时必须使用重加权

F. Teytaud, O. Teytaud
{"title":"为什么在估计分布算法时必须使用重加权","authors":"F. Teytaud, O. Teytaud","doi":"10.1145/1569901.1569964","DOIUrl":null,"url":null,"abstract":"We study the update of the distribution in Estimation of Distribution Algorithms, and show that a simple modification leads to unbiased estimates of the optimum. The simple modification (based on a proper reweighting of estimates) leads to a strongly improved behavior in front of premature convergence.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Why one must use reweighting in estimation of distribution algorithms\",\"authors\":\"F. Teytaud, O. Teytaud\",\"doi\":\"10.1145/1569901.1569964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the update of the distribution in Estimation of Distribution Algorithms, and show that a simple modification leads to unbiased estimates of the optimum. The simple modification (based on a proper reweighting of estimates) leads to a strongly improved behavior in front of premature convergence.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们研究了分布估计算法中分布的更新,并证明了一个简单的修改可以得到最优的无偏估计。简单的修改(基于对估计的适当重新加权)导致在过早收敛前的行为得到了强有力的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why one must use reweighting in estimation of distribution algorithms
We study the update of the distribution in Estimation of Distribution Algorithms, and show that a simple modification leads to unbiased estimates of the optimum. The simple modification (based on a proper reweighting of estimates) leads to a strongly improved behavior in front of premature convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信