{"title":"利用网络中心性进行时态网络变化检测","authors":"Yoshitaro Yonamoto, K. Morino, K. Yamanishi","doi":"10.1109/DSAA.2016.13","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel change detection method for temporal networks. In usual change detection algorithms, change scores are generated from an observed time series. When this change score reaches a threshold, an alert is raised to declare the change. Our method aggregates these change scores and alerts based on network centralities. Many types of changes in a network can be discovered from changes to the network structure. Thus, nodes and links should be monitored in order to recognize changes. However, it is difficult to focus on the appropriate nodes and links when there is little information regarding the dataset. Network centrality such as PageRank measures the importance of nodes in a network based on certain criteria. Therefore, it is natural to apply network centralities in order to improve the accuracy of change detection methods. Our analysis reveals how and when network centrality works well in terms of change detection. Based on this understanding, we propose an aggregating algorithm that emphasizes the appropriate network centralities. Our evaluation of the proposed aggregation algorithm showed highly accurate predictions for an artificial dataset and two real datasets. Our method contributes to extending the field of change detection in temporal networks by utilizing network centralities.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Temporal Network Change Detection Using Network Centralities\",\"authors\":\"Yoshitaro Yonamoto, K. Morino, K. Yamanishi\",\"doi\":\"10.1109/DSAA.2016.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel change detection method for temporal networks. In usual change detection algorithms, change scores are generated from an observed time series. When this change score reaches a threshold, an alert is raised to declare the change. Our method aggregates these change scores and alerts based on network centralities. Many types of changes in a network can be discovered from changes to the network structure. Thus, nodes and links should be monitored in order to recognize changes. However, it is difficult to focus on the appropriate nodes and links when there is little information regarding the dataset. Network centrality such as PageRank measures the importance of nodes in a network based on certain criteria. Therefore, it is natural to apply network centralities in order to improve the accuracy of change detection methods. Our analysis reveals how and when network centrality works well in terms of change detection. Based on this understanding, we propose an aggregating algorithm that emphasizes the appropriate network centralities. Our evaluation of the proposed aggregation algorithm showed highly accurate predictions for an artificial dataset and two real datasets. Our method contributes to extending the field of change detection in temporal networks by utilizing network centralities.\",\"PeriodicalId\":193885,\"journal\":{\"name\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"303 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2016.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal Network Change Detection Using Network Centralities
In this paper, we propose a novel change detection method for temporal networks. In usual change detection algorithms, change scores are generated from an observed time series. When this change score reaches a threshold, an alert is raised to declare the change. Our method aggregates these change scores and alerts based on network centralities. Many types of changes in a network can be discovered from changes to the network structure. Thus, nodes and links should be monitored in order to recognize changes. However, it is difficult to focus on the appropriate nodes and links when there is little information regarding the dataset. Network centrality such as PageRank measures the importance of nodes in a network based on certain criteria. Therefore, it is natural to apply network centralities in order to improve the accuracy of change detection methods. Our analysis reveals how and when network centrality works well in terms of change detection. Based on this understanding, we propose an aggregating algorithm that emphasizes the appropriate network centralities. Our evaluation of the proposed aggregation algorithm showed highly accurate predictions for an artificial dataset and two real datasets. Our method contributes to extending the field of change detection in temporal networks by utilizing network centralities.