单隐层和双隐层神经网络在线性分组码译码中的适用性

Srdan Brkic, P. Ivaniš, B. Vasic
{"title":"单隐层和双隐层神经网络在线性分组码译码中的适用性","authors":"Srdan Brkic, P. Ivaniš, B. Vasic","doi":"10.1109/TELFOR52709.2021.9653357","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze applicability of single- and two-hidden-layer feed-forward artificial neural networks, SLFNs and TLFNs, respectively, in decoding linear block codes. Based on the provable capability of SLFNs and TLFNs to approximate discrete functions, we discuss sizes of the network capable to perform maximum likelihood decoding. Furthermore, we propose a decoding scheme, which use artificial neural networks (ANNs) to lower the error-floors of low-density parity-check (LDPC) codes. By learning a small number of error patterns, uncorrectable with typical decoders of LDPC codes, ANN can lower the error-floor by an order of magnitude, with only marginal average complexity incense.","PeriodicalId":330449,"journal":{"name":"2021 29th Telecommunications Forum (TELFOR)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applicability of single- and two-hidden-layer neural networks in decoding linear block codes\",\"authors\":\"Srdan Brkic, P. Ivaniš, B. Vasic\",\"doi\":\"10.1109/TELFOR52709.2021.9653357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze applicability of single- and two-hidden-layer feed-forward artificial neural networks, SLFNs and TLFNs, respectively, in decoding linear block codes. Based on the provable capability of SLFNs and TLFNs to approximate discrete functions, we discuss sizes of the network capable to perform maximum likelihood decoding. Furthermore, we propose a decoding scheme, which use artificial neural networks (ANNs) to lower the error-floors of low-density parity-check (LDPC) codes. By learning a small number of error patterns, uncorrectable with typical decoders of LDPC codes, ANN can lower the error-floor by an order of magnitude, with only marginal average complexity incense.\",\"PeriodicalId\":330449,\"journal\":{\"name\":\"2021 29th Telecommunications Forum (TELFOR)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 29th Telecommunications Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR52709.2021.9653357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 29th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR52709.2021.9653357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了单隐层前馈人工神经网络(SLFNs)和双隐层前馈人工神经网络(TLFNs)在线性分组码译码中的适用性。基于slfn和tlfn可证明的逼近离散函数的能力,我们讨论了能够执行最大似然解码的网络的大小。此外,我们提出了一种利用人工神经网络(ann)来降低低密度奇偶校验(LDPC)码的错误层的译码方案。通过学习少量错误模式(LDPC码的典型解码器无法纠正),人工神经网络可以将错误层降低一个数量级,而平均复杂度仅为边际。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applicability of single- and two-hidden-layer neural networks in decoding linear block codes
In this paper, we analyze applicability of single- and two-hidden-layer feed-forward artificial neural networks, SLFNs and TLFNs, respectively, in decoding linear block codes. Based on the provable capability of SLFNs and TLFNs to approximate discrete functions, we discuss sizes of the network capable to perform maximum likelihood decoding. Furthermore, we propose a decoding scheme, which use artificial neural networks (ANNs) to lower the error-floors of low-density parity-check (LDPC) codes. By learning a small number of error patterns, uncorrectable with typical decoders of LDPC codes, ANN can lower the error-floor by an order of magnitude, with only marginal average complexity incense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信