概率程序性能分析

Ioannis Stefanakos, R. Calinescu, Simos Gerasimou
{"title":"概率程序性能分析","authors":"Ioannis Stefanakos, R. Calinescu, Simos Gerasimou","doi":"10.1109/SEAA53835.2021.00027","DOIUrl":null,"url":null,"abstract":"We introduce a tool-supported method for the formal analysis of timing, resource use, cost and other quality aspects of computer programs. The new method synthesises a Markov-chain model of the analysed code, computes this quantitative model’s transition probabilities using information from program logs, and employs probabilistic model checking to evaluate the performance properties of interest. Unlike existing solutions, our method can reuse the probabilistic model to accurately predict how the program performance would change if the code ran on a different hardware platform, used a new function library, or had a different usage profile. We show the effectiveness of our method by using it to analyse the performance of Java code from the Apache Commons Math library, the Android messaging app Telegram, and an implementation of the knapsack algorithm.","PeriodicalId":435977,"journal":{"name":"2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Probabilistic Program Performance Analysis\",\"authors\":\"Ioannis Stefanakos, R. Calinescu, Simos Gerasimou\",\"doi\":\"10.1109/SEAA53835.2021.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a tool-supported method for the formal analysis of timing, resource use, cost and other quality aspects of computer programs. The new method synthesises a Markov-chain model of the analysed code, computes this quantitative model’s transition probabilities using information from program logs, and employs probabilistic model checking to evaluate the performance properties of interest. Unlike existing solutions, our method can reuse the probabilistic model to accurately predict how the program performance would change if the code ran on a different hardware platform, used a new function library, or had a different usage profile. We show the effectiveness of our method by using it to analyse the performance of Java code from the Apache Commons Math library, the Android messaging app Telegram, and an implementation of the knapsack algorithm.\",\"PeriodicalId\":435977,\"journal\":{\"name\":\"2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA53835.2021.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA53835.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们介绍了一种工具支持的方法,用于对计算机程序的时间、资源使用、成本和其他质量方面进行形式化分析。新方法综合了被分析代码的马尔可夫链模型,利用程序日志信息计算该定量模型的转移概率,并采用概率模型检查来评估感兴趣的性能特性。与现有的解决方案不同,我们的方法可以重用概率模型来准确地预测如果代码在不同的硬件平台上运行、使用新的函数库或具有不同的使用配置文件,程序性能将如何变化。我们通过分析Apache Commons Math库、Android消息应用Telegram和一个背包算法的实现中的Java代码的性能来展示我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Program Performance Analysis
We introduce a tool-supported method for the formal analysis of timing, resource use, cost and other quality aspects of computer programs. The new method synthesises a Markov-chain model of the analysed code, computes this quantitative model’s transition probabilities using information from program logs, and employs probabilistic model checking to evaluate the performance properties of interest. Unlike existing solutions, our method can reuse the probabilistic model to accurately predict how the program performance would change if the code ran on a different hardware platform, used a new function library, or had a different usage profile. We show the effectiveness of our method by using it to analyse the performance of Java code from the Apache Commons Math library, the Android messaging app Telegram, and an implementation of the knapsack algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信