Yangguang Tian, Yingjiu Li, Guomin Yang, W. Susilo, Y. Mu, Hui Cui, Yinghui Zhang
{"title":"安全的基于可否认属性的密钥交换框架","authors":"Yangguang Tian, Yingjiu Li, Guomin Yang, W. Susilo, Y. Mu, Hui Cui, Yinghui Zhang","doi":"10.3233/JCS-181201","DOIUrl":null,"url":null,"abstract":"We introduce the first deniable attribute-based key exchange (DABKE) framework that is resilient to impersonation attacks. We define the formal security models for DABKE framework, and propose a generic compiler that converts any attribute-based key exchanges into deniable ones. We prove that it can achieve session key security and user privacy in the standard model, and strong deniability in the simulation-based paradigm. In particular, the proposed generic compiler ensures: 1) a dishonest user cannot impersonate other user’s session participation in conversations since implicit authentication is used among authorized users; 2) an authorized user can plausibly deny his/her participation after secure conversations with others; 3) the strongest form of deniability is achieved using one-round communication between two authorized users.","PeriodicalId":142580,"journal":{"name":"J. Comput. Secur.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DABKE: Secure deniable attribute-based key exchange framework\",\"authors\":\"Yangguang Tian, Yingjiu Li, Guomin Yang, W. Susilo, Y. Mu, Hui Cui, Yinghui Zhang\",\"doi\":\"10.3233/JCS-181201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the first deniable attribute-based key exchange (DABKE) framework that is resilient to impersonation attacks. We define the formal security models for DABKE framework, and propose a generic compiler that converts any attribute-based key exchanges into deniable ones. We prove that it can achieve session key security and user privacy in the standard model, and strong deniability in the simulation-based paradigm. In particular, the proposed generic compiler ensures: 1) a dishonest user cannot impersonate other user’s session participation in conversations since implicit authentication is used among authorized users; 2) an authorized user can plausibly deny his/her participation after secure conversations with others; 3) the strongest form of deniability is achieved using one-round communication between two authorized users.\",\"PeriodicalId\":142580,\"journal\":{\"name\":\"J. Comput. Secur.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/JCS-181201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JCS-181201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce the first deniable attribute-based key exchange (DABKE) framework that is resilient to impersonation attacks. We define the formal security models for DABKE framework, and propose a generic compiler that converts any attribute-based key exchanges into deniable ones. We prove that it can achieve session key security and user privacy in the standard model, and strong deniability in the simulation-based paradigm. In particular, the proposed generic compiler ensures: 1) a dishonest user cannot impersonate other user’s session participation in conversations since implicit authentication is used among authorized users; 2) an authorized user can plausibly deny his/her participation after secure conversations with others; 3) the strongest form of deniability is achieved using one-round communication between two authorized users.