基于观测器的块脉冲函数最优控制设计

Ines Sansa Aousgi, S. Elloumi, N. Braiek
{"title":"基于观测器的块脉冲函数最优控制设计","authors":"Ines Sansa Aousgi, S. Elloumi, N. Braiek","doi":"10.1109/MED.2014.6961433","DOIUrl":null,"url":null,"abstract":"This paper deals with the synthesis of an observer based optimal control using the Block Pulse Functions (BPFs) parametrization technique. This tool transforms the optimal control problem to a mathematical programming problem that can be solved numerically. The importance of the proposed technique for the synthesis of the state observer with optimal control via BPFs has been illustrated through a numerical simulation study on an aircraft system model, which has highlighted the effectiveness of the developed method.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design of an observer based optimal control via Block Pulse Functions\",\"authors\":\"Ines Sansa Aousgi, S. Elloumi, N. Braiek\",\"doi\":\"10.1109/MED.2014.6961433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the synthesis of an observer based optimal control using the Block Pulse Functions (BPFs) parametrization technique. This tool transforms the optimal control problem to a mathematical programming problem that can be solved numerically. The importance of the proposed technique for the synthesis of the state observer with optimal control via BPFs has been illustrated through a numerical simulation study on an aircraft system model, which has highlighted the effectiveness of the developed method.\",\"PeriodicalId\":127957,\"journal\":{\"name\":\"22nd Mediterranean Conference on Control and Automation\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2014.6961433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了用块脉冲函数参数化技术合成基于观测器的最优控制。该工具将最优控制问题转化为可以用数值方法求解的数学规划问题。通过对某飞机系统模型的数值仿真研究,说明了该方法对状态观测器与最优控制的综合的重要性,并强调了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of an observer based optimal control via Block Pulse Functions
This paper deals with the synthesis of an observer based optimal control using the Block Pulse Functions (BPFs) parametrization technique. This tool transforms the optimal control problem to a mathematical programming problem that can be solved numerically. The importance of the proposed technique for the synthesis of the state observer with optimal control via BPFs has been illustrated through a numerical simulation study on an aircraft system model, which has highlighted the effectiveness of the developed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信