基于前馈神经网络的多频带特征脑电信号癫痫发作检测

Kazi Mahmudul Hassan, M. Islam, Toshihisa Tanaka, M. I. Molla
{"title":"基于前馈神经网络的多频带特征脑电信号癫痫发作检测","authors":"Kazi Mahmudul Hassan, M. Islam, Toshihisa Tanaka, M. I. Molla","doi":"10.1109/CW.2019.00046","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) is considered as a potential tool for diagnosis of epilepsy in clinical applications. Epileptic seizures occur irregularly and unpredictably. Its automatic detection in EEG recordings is highly demanding. In this work, multiband features are used to detect seizure with feedforward neural network (FfNN). The EEG signal is segmented into epochs of short duration and each epoch is decomposed into a number of subbands using discrete wavelet transform (DWT). Three features namely ellipse area of second-order difference plot, coefficient of variation and fluctuation index are computed from each subband signal. The features obtained from all subbands are combined to construct the feature vector. The FfNN is trained using the derived feature vector and seizure detection is performed with test data. The experiment is performed with publicly available dataset to evaluate the performance of the proposed method. The experimental results show the superiority of this method compared to the recently developed algorithms.","PeriodicalId":117409,"journal":{"name":"2019 International Conference on Cyberworlds (CW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Epileptic Seizure Detection from EEG Signals Using Multiband Features with Feedforward Neural Network\",\"authors\":\"Kazi Mahmudul Hassan, M. Islam, Toshihisa Tanaka, M. I. Molla\",\"doi\":\"10.1109/CW.2019.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG) is considered as a potential tool for diagnosis of epilepsy in clinical applications. Epileptic seizures occur irregularly and unpredictably. Its automatic detection in EEG recordings is highly demanding. In this work, multiband features are used to detect seizure with feedforward neural network (FfNN). The EEG signal is segmented into epochs of short duration and each epoch is decomposed into a number of subbands using discrete wavelet transform (DWT). Three features namely ellipse area of second-order difference plot, coefficient of variation and fluctuation index are computed from each subband signal. The features obtained from all subbands are combined to construct the feature vector. The FfNN is trained using the derived feature vector and seizure detection is performed with test data. The experiment is performed with publicly available dataset to evaluate the performance of the proposed method. The experimental results show the superiority of this method compared to the recently developed algorithms.\",\"PeriodicalId\":117409,\"journal\":{\"name\":\"2019 International Conference on Cyberworlds (CW)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Cyberworlds (CW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2019.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2019.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

脑电图(EEG)在临床上被认为是一种潜在的癫痫诊断工具。癫痫发作是不规律和不可预测的。在脑电记录中对其自动检测要求很高。本研究利用前馈神经网络(FfNN)的多波段特征来检测癫痫发作。利用离散小波变换(DWT)将脑电信号分割成短持续时间的多个历元,并将每个历元分解为多个子带。从每个子带信号中计算二阶差分图的椭圆面积、变异系数和波动指数三个特征。将所有子带得到的特征组合起来构成特征向量。FfNN使用衍生的特征向量进行训练,并使用测试数据进行癫痫检测。实验是在公开可用的数据集上进行的,以评估所提出方法的性能。实验结果表明,该方法与目前开发的算法相比具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epileptic Seizure Detection from EEG Signals Using Multiband Features with Feedforward Neural Network
Electroencephalography (EEG) is considered as a potential tool for diagnosis of epilepsy in clinical applications. Epileptic seizures occur irregularly and unpredictably. Its automatic detection in EEG recordings is highly demanding. In this work, multiband features are used to detect seizure with feedforward neural network (FfNN). The EEG signal is segmented into epochs of short duration and each epoch is decomposed into a number of subbands using discrete wavelet transform (DWT). Three features namely ellipse area of second-order difference plot, coefficient of variation and fluctuation index are computed from each subband signal. The features obtained from all subbands are combined to construct the feature vector. The FfNN is trained using the derived feature vector and seizure detection is performed with test data. The experiment is performed with publicly available dataset to evaluate the performance of the proposed method. The experimental results show the superiority of this method compared to the recently developed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信