{"title":"扩散蛇:在变分框架中结合统计形状知识和图像信息","authors":"D. Cremers, C. Schnörr, J. Weickert","doi":"10.1109/VLSM.2001.938892","DOIUrl":null,"url":null,"abstract":"We present a modification of the Mumford-Shah functional and its cartoon limit which allows the incorporation of statistical shape knowledge in a single energy functional. We show segmentation results on artificial and real-world images with and without prior shape information. In the case of occlusion and strongly cluttered background the shape prior significantly improves segmentation. Finally we compare our results to those obtained by a level-set implementation of geodesic active contours.","PeriodicalId":445975,"journal":{"name":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework\",\"authors\":\"D. Cremers, C. Schnörr, J. Weickert\",\"doi\":\"10.1109/VLSM.2001.938892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a modification of the Mumford-Shah functional and its cartoon limit which allows the incorporation of statistical shape knowledge in a single energy functional. We show segmentation results on artificial and real-world images with and without prior shape information. In the case of occlusion and strongly cluttered background the shape prior significantly improves segmentation. Finally we compare our results to those obtained by a level-set implementation of geodesic active contours.\",\"PeriodicalId\":445975,\"journal\":{\"name\":\"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSM.2001.938892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSM.2001.938892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework
We present a modification of the Mumford-Shah functional and its cartoon limit which allows the incorporation of statistical shape knowledge in a single energy functional. We show segmentation results on artificial and real-world images with and without prior shape information. In the case of occlusion and strongly cluttered background the shape prior significantly improves segmentation. Finally we compare our results to those obtained by a level-set implementation of geodesic active contours.