用于灾害响应的空中和地面机器人的三维配准:特征、描述符和转换估计的评估

A. Gawel, Renaud Dubé, H. Surmann, Juan I. Nieto, R. Siegwart, César Cadena
{"title":"用于灾害响应的空中和地面机器人的三维配准:特征、描述符和转换估计的评估","authors":"A. Gawel, Renaud Dubé, H. Surmann, Juan I. Nieto, R. Siegwart, César Cadena","doi":"10.1109/SSRR.2017.8088136","DOIUrl":null,"url":null,"abstract":"Global registration of heterogeneous ground and aerial mapping data is a challenging task. This is especially difficult in disaster response scenarios when we have no prior information on the environment and cannot assume the regular order of man-made environments or meaningful semantic cues. In this work we extensively evaluate different approaches to globally register UGV generated 3D point-cloud data from LiDAR sensors with UAV generated point-cloud maps from vision sensors. The approaches are realizations of different selections for: a) local features: key-points or segments; b) descriptors: FPFH, SHOT, or ESF; and c) transformation estimations: RANSAC or FGR. Additionally, we compare the results against standard approaches like applying ICP after a good prior transformation has been given. The evaluation criteria include the distance which a UGV needs to travel to successfully localize, the registration error, and the computational cost. In this context, we report our findings on effectively performing the task on two new Search and Rescue datasets. Our results have the potential to help the community take informed decisions when registering point-cloud maps from ground robots to those from aerial robots.","PeriodicalId":403881,"journal":{"name":"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)","volume":"152 6 Suppl 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"3D registration of aerial and ground robots for disaster response: An evaluation of features, descriptors, and transformation estimation\",\"authors\":\"A. Gawel, Renaud Dubé, H. Surmann, Juan I. Nieto, R. Siegwart, César Cadena\",\"doi\":\"10.1109/SSRR.2017.8088136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global registration of heterogeneous ground and aerial mapping data is a challenging task. This is especially difficult in disaster response scenarios when we have no prior information on the environment and cannot assume the regular order of man-made environments or meaningful semantic cues. In this work we extensively evaluate different approaches to globally register UGV generated 3D point-cloud data from LiDAR sensors with UAV generated point-cloud maps from vision sensors. The approaches are realizations of different selections for: a) local features: key-points or segments; b) descriptors: FPFH, SHOT, or ESF; and c) transformation estimations: RANSAC or FGR. Additionally, we compare the results against standard approaches like applying ICP after a good prior transformation has been given. The evaluation criteria include the distance which a UGV needs to travel to successfully localize, the registration error, and the computational cost. In this context, we report our findings on effectively performing the task on two new Search and Rescue datasets. Our results have the potential to help the community take informed decisions when registering point-cloud maps from ground robots to those from aerial robots.\",\"PeriodicalId\":403881,\"journal\":{\"name\":\"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)\",\"volume\":\"152 6 Suppl 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSRR.2017.8088136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR.2017.8088136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

异构地面和航空测绘数据的全球配准是一项具有挑战性的任务。这在灾难响应场景中尤其困难,因为我们没有关于环境的先验信息,不能假设人造环境的常规顺序或有意义的语义线索。在这项工作中,我们广泛评估了从激光雷达传感器生成的UGV生成的3D点云数据与无人机从视觉传感器生成的点云地图的全球注册的不同方法。方法是实现不同的选择:a)局部特征:关键点或段;b)描述符:FPFH、SHOT或ESF;c)转换估计:RANSAC或FGR。此外,我们将结果与标准方法(如在给出良好的先前转换后应用ICP)进行比较。评估标准包括UGV成功定位所需的距离、配准误差和计算成本。在此背景下,我们报告了在两个新的搜索和救援数据集上有效执行任务的发现。我们的研究结果有可能帮助社区在从地面机器人到空中机器人注册点云地图时做出明智的决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D registration of aerial and ground robots for disaster response: An evaluation of features, descriptors, and transformation estimation
Global registration of heterogeneous ground and aerial mapping data is a challenging task. This is especially difficult in disaster response scenarios when we have no prior information on the environment and cannot assume the regular order of man-made environments or meaningful semantic cues. In this work we extensively evaluate different approaches to globally register UGV generated 3D point-cloud data from LiDAR sensors with UAV generated point-cloud maps from vision sensors. The approaches are realizations of different selections for: a) local features: key-points or segments; b) descriptors: FPFH, SHOT, or ESF; and c) transformation estimations: RANSAC or FGR. Additionally, we compare the results against standard approaches like applying ICP after a good prior transformation has been given. The evaluation criteria include the distance which a UGV needs to travel to successfully localize, the registration error, and the computational cost. In this context, we report our findings on effectively performing the task on two new Search and Rescue datasets. Our results have the potential to help the community take informed decisions when registering point-cloud maps from ground robots to those from aerial robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信