用深度神经网络(DNN)方法估计溢流流量

Changkyu Kim, Insik Chun, Byungcheol Oh
{"title":"用深度神经网络(DNN)方法估计溢流流量","authors":"Changkyu Kim, Insik Chun, Byungcheol Oh","doi":"10.20481/kscdp.2021.8.4.229","DOIUrl":null,"url":null,"abstract":"An Artificial Intelligence(AI) study was conducted to calculate overtopping discharges for various coastal structures. The Deep Neural Network(DNN), one of the artificial intelligence methods, was employed in the study. The neural network was trained, validated and tested using the EurOtop database containing the experimental data collected from all over the world. To improve the accuracy of the deep neural network results, all data were non-dimensionalized and max-min normalized as a preprocessing process. L2 regularization was also introduced in the cost function to secure the convergence of iterative learning, and the cost function was optimized using RMSProp and Adam techniques. In order to compare the performance of DNN, additional calculations based on the multiple linear regression model and EurOtop’s overtopping formulas were done as well, using the data sets which were not included in the network training. The results showed that the predictive performance of the AI technique was relatively superior to the two other methods.","PeriodicalId":326564,"journal":{"name":"Korea Society of Coastal Disaster Prevention","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Overtopping Discharges with Deep Neural Network(DNN) Method\",\"authors\":\"Changkyu Kim, Insik Chun, Byungcheol Oh\",\"doi\":\"10.20481/kscdp.2021.8.4.229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Artificial Intelligence(AI) study was conducted to calculate overtopping discharges for various coastal structures. The Deep Neural Network(DNN), one of the artificial intelligence methods, was employed in the study. The neural network was trained, validated and tested using the EurOtop database containing the experimental data collected from all over the world. To improve the accuracy of the deep neural network results, all data were non-dimensionalized and max-min normalized as a preprocessing process. L2 regularization was also introduced in the cost function to secure the convergence of iterative learning, and the cost function was optimized using RMSProp and Adam techniques. In order to compare the performance of DNN, additional calculations based on the multiple linear regression model and EurOtop’s overtopping formulas were done as well, using the data sets which were not included in the network training. The results showed that the predictive performance of the AI technique was relatively superior to the two other methods.\",\"PeriodicalId\":326564,\"journal\":{\"name\":\"Korea Society of Coastal Disaster Prevention\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korea Society of Coastal Disaster Prevention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20481/kscdp.2021.8.4.229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea Society of Coastal Disaster Prevention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20481/kscdp.2021.8.4.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

进行了一项人工智能(AI)研究,以计算各种海岸结构的溢水流量。研究中采用了人工智能方法之一的深度神经网络(Deep Neural Network, DNN)。使用EurOtop数据库对神经网络进行训练、验证和测试,该数据库包含从世界各地收集的实验数据。为了提高深度神经网络结果的准确性,所有数据都进行了无维化和最大最小归一化作为预处理过程。在代价函数中引入L2正则化以保证迭代学习的收敛性,并利用RMSProp和Adam技术对代价函数进行优化。为了比较DNN的性能,我们还使用未包含在网络训练中的数据集,基于多元线性回归模型和EurOtop的overtopping公式进行了额外的计算。结果表明,人工智能技术的预测性能相对优于其他两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Overtopping Discharges with Deep Neural Network(DNN) Method
An Artificial Intelligence(AI) study was conducted to calculate overtopping discharges for various coastal structures. The Deep Neural Network(DNN), one of the artificial intelligence methods, was employed in the study. The neural network was trained, validated and tested using the EurOtop database containing the experimental data collected from all over the world. To improve the accuracy of the deep neural network results, all data were non-dimensionalized and max-min normalized as a preprocessing process. L2 regularization was also introduced in the cost function to secure the convergence of iterative learning, and the cost function was optimized using RMSProp and Adam techniques. In order to compare the performance of DNN, additional calculations based on the multiple linear regression model and EurOtop’s overtopping formulas were done as well, using the data sets which were not included in the network training. The results showed that the predictive performance of the AI technique was relatively superior to the two other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信