W. Jarrett, S. Avramov-Zamurovic, J. Esposito, C. Nelson
{"title":"在可变实验条件下部分训练基于机器学习的光通信系统的挑战","authors":"W. Jarrett, S. Avramov-Zamurovic, J. Esposito, C. Nelson","doi":"10.1364/pcaop.2022.pth4f.1","DOIUrl":null,"url":null,"abstract":"We present challenges when training a machine learning-based underwater wireless optical communication system in selected experimental scenarios. The system is tested under different conditions, that include minor beam misalignment and varying optical turbulence.","PeriodicalId":286361,"journal":{"name":"Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges when Partially Training a Machine Learning-Based Optical Communication System in Variable Experimental Conditions\",\"authors\":\"W. Jarrett, S. Avramov-Zamurovic, J. Esposito, C. Nelson\",\"doi\":\"10.1364/pcaop.2022.pth4f.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present challenges when training a machine learning-based underwater wireless optical communication system in selected experimental scenarios. The system is tested under different conditions, that include minor beam misalignment and varying optical turbulence.\",\"PeriodicalId\":286361,\"journal\":{\"name\":\"Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/pcaop.2022.pth4f.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/pcaop.2022.pth4f.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenges when Partially Training a Machine Learning-Based Optical Communication System in Variable Experimental Conditions
We present challenges when training a machine learning-based underwater wireless optical communication system in selected experimental scenarios. The system is tested under different conditions, that include minor beam misalignment and varying optical turbulence.