基于多元自适应回归样条的阵列插值

M. A. M. Marinho, J. Costa, F. Antreich, A. D. Almeida, G. D. Galdo, E. P. Freitas, A. Vinel
{"title":"基于多元自适应回归样条的阵列插值","authors":"M. A. M. Marinho, J. Costa, F. Antreich, A. D. Almeida, G. D. Galdo, E. P. Freitas, A. Vinel","doi":"10.1109/SAM.2016.7569704","DOIUrl":null,"url":null,"abstract":"Many important signal processing techniques such as Spatial Smoothing, Forward Backward Averaging and Root-MUSIC, rely on antenna arrays with specific and precise structures. Arrays with such ideal structures, such as a centro-hermitian structure, are often hard to build in practice. Array interpolation is used to enable the usage of these techniques with imperfect (not having a centro-hermitian structure) arrays. Most interpolation methods rely on methods based on least squares (LS) to map the output of a perfect virtual array based on the real array. In this work, the usage of Multivariate Adaptive Regression Splines (MARS) is proposed instead of the traditional LS to interpolate arrays with responses largely different from the ideal.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Array interpolation based on multivariate adaptive regression splines\",\"authors\":\"M. A. M. Marinho, J. Costa, F. Antreich, A. D. Almeida, G. D. Galdo, E. P. Freitas, A. Vinel\",\"doi\":\"10.1109/SAM.2016.7569704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many important signal processing techniques such as Spatial Smoothing, Forward Backward Averaging and Root-MUSIC, rely on antenna arrays with specific and precise structures. Arrays with such ideal structures, such as a centro-hermitian structure, are often hard to build in practice. Array interpolation is used to enable the usage of these techniques with imperfect (not having a centro-hermitian structure) arrays. Most interpolation methods rely on methods based on least squares (LS) to map the output of a perfect virtual array based on the real array. In this work, the usage of Multivariate Adaptive Regression Splines (MARS) is proposed instead of the traditional LS to interpolate arrays with responses largely different from the ideal.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

许多重要的信号处理技术,如空间平滑、前向后向平均和Root-MUSIC,都依赖于具有特定和精确结构的天线阵列。具有这种理想结构的阵列,例如中心厄米结构,在实践中通常很难构建。阵列内插用于使不完美(没有中心厄米结构)阵列能够使用这些技术。大多数插值方法依赖于基于最小二乘(LS)的方法来映射基于真实阵列的完美虚拟阵列的输出。在这项工作中,提出了使用多元自适应回归样条(MARS)来代替传统的LS来插值响应与理想值差异很大的阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Array interpolation based on multivariate adaptive regression splines
Many important signal processing techniques such as Spatial Smoothing, Forward Backward Averaging and Root-MUSIC, rely on antenna arrays with specific and precise structures. Arrays with such ideal structures, such as a centro-hermitian structure, are often hard to build in practice. Array interpolation is used to enable the usage of these techniques with imperfect (not having a centro-hermitian structure) arrays. Most interpolation methods rely on methods based on least squares (LS) to map the output of a perfect virtual array based on the real array. In this work, the usage of Multivariate Adaptive Regression Splines (MARS) is proposed instead of the traditional LS to interpolate arrays with responses largely different from the ideal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信