基于ANARX模型的神经网络动态输出反馈线性化非线性TITO系统的模型参考控制

J. Belikov, E. Petlenkov
{"title":"基于ANARX模型的神经网络动态输出反馈线性化非线性TITO系统的模型参考控制","authors":"J. Belikov, E. Petlenkov","doi":"10.1109/CCA.2009.5281030","DOIUrl":null,"url":null,"abstract":"A dynamic output feedback linearization technique for model reference control of nonlinear TITO (two-input two-output) systems identified by an Additive Nonlinear Autoregressive eXogenous (ANARX) model is proposed. ANARX structure of the model can be obtained by training a neural network of the specific restricted connectivity structure. Linear discrete-time reference model is given in the form of transfer matrix defining desired zeros and poles of the closed loop system. NN-based ANARX model can be linearized by the proposed linearization algorithm thus that the transfer matrix of the linear closed loop system corresponds to the given reference model. The proposed linearization algorithm can be applied to control of a wide class of nonlinear SISO and TITO systems. The effectiveness of the proposed control technique is demonstrated on numerical examples.","PeriodicalId":294950,"journal":{"name":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model reference control of nonlinear TITO systems by dynamic output feedback linearization of neural network based ANARX models\",\"authors\":\"J. Belikov, E. Petlenkov\",\"doi\":\"10.1109/CCA.2009.5281030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic output feedback linearization technique for model reference control of nonlinear TITO (two-input two-output) systems identified by an Additive Nonlinear Autoregressive eXogenous (ANARX) model is proposed. ANARX structure of the model can be obtained by training a neural network of the specific restricted connectivity structure. Linear discrete-time reference model is given in the form of transfer matrix defining desired zeros and poles of the closed loop system. NN-based ANARX model can be linearized by the proposed linearization algorithm thus that the transfer matrix of the linear closed loop system corresponds to the given reference model. The proposed linearization algorithm can be applied to control of a wide class of nonlinear SISO and TITO systems. The effectiveness of the proposed control technique is demonstrated on numerical examples.\",\"PeriodicalId\":294950,\"journal\":{\"name\":\"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2009.5281030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2009.5281030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于非线性自回归外生(ANARX)模型辨识的非线性双输入双输出系统模型参考控制的动态输出反馈线性化技术。通过训练具有特定限制连接结构的神经网络,可以得到模型的ANARX结构。以传递矩阵的形式给出了线性离散参考模型,定义了闭环系统的期望零点和极点。提出的线性化算法可以对基于神经网络的ANARX模型进行线性化,使线性闭环系统的传递矩阵对应于给定的参考模型。所提出的线性化算法可应用于广泛的非线性SISO和TITO系统的控制。数值算例验证了该控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model reference control of nonlinear TITO systems by dynamic output feedback linearization of neural network based ANARX models
A dynamic output feedback linearization technique for model reference control of nonlinear TITO (two-input two-output) systems identified by an Additive Nonlinear Autoregressive eXogenous (ANARX) model is proposed. ANARX structure of the model can be obtained by training a neural network of the specific restricted connectivity structure. Linear discrete-time reference model is given in the form of transfer matrix defining desired zeros and poles of the closed loop system. NN-based ANARX model can be linearized by the proposed linearization algorithm thus that the transfer matrix of the linear closed loop system corresponds to the given reference model. The proposed linearization algorithm can be applied to control of a wide class of nonlinear SISO and TITO systems. The effectiveness of the proposed control technique is demonstrated on numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信