波状微通道中的两相流动共轭换热

Nishant Tiwari, M. Moharana
{"title":"波状微通道中的两相流动共轭换热","authors":"Nishant Tiwari, M. Moharana","doi":"10.1115/ICNMM2018-7735","DOIUrl":null,"url":null,"abstract":"Flow boiling in microchannel heat sink offers an effective cooling solution for high power density micro devices. A three-dimensional numerical study based on volume of fraction model (VOF) coupled with evaporation condensation model accounting for the liquid-vapor phase change is undertaken to recreate vapor bubble formation in saturated flow boiling in wavy microchannel. Constant wall heat flux imposed at the bottom surface of the substrate while other faces are insulated. To understand the conjugate effects, simulations has been carried out for substrate thickness to channel depth ratio (δsf ∼ 1–5), substrate wall to fluid thermal conductivity ratio (ksf ∼ 22–300) and waviness (γ ∼ 0.008–0.04). Bubble nucleation, growth, and departure of bubble plays a significant role in heat transfer and pressure drop characteristics in two-phase flow in wavy microchannel. The coolant (water) temperature at the inlet is taken to be 373 K while flow was at atmospheric pressure. This makes shorter waiting period of bubble nucleation, and the number density of bubbles on the solid surface increases. This results in enhancement of the boiling effect, and thus with the presence of bubbles, the mixing of laminar boundary layers improves and enhances the overall heat transfer coefficient. Channel amplitude play an important factor that can suitably reduce the friction factor and enhances the heat transfer coefficient.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Two-Phase Flow Conjugate Heat Transfer in Wavy Microchannel\",\"authors\":\"Nishant Tiwari, M. Moharana\",\"doi\":\"10.1115/ICNMM2018-7735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow boiling in microchannel heat sink offers an effective cooling solution for high power density micro devices. A three-dimensional numerical study based on volume of fraction model (VOF) coupled with evaporation condensation model accounting for the liquid-vapor phase change is undertaken to recreate vapor bubble formation in saturated flow boiling in wavy microchannel. Constant wall heat flux imposed at the bottom surface of the substrate while other faces are insulated. To understand the conjugate effects, simulations has been carried out for substrate thickness to channel depth ratio (δsf ∼ 1–5), substrate wall to fluid thermal conductivity ratio (ksf ∼ 22–300) and waviness (γ ∼ 0.008–0.04). Bubble nucleation, growth, and departure of bubble plays a significant role in heat transfer and pressure drop characteristics in two-phase flow in wavy microchannel. The coolant (water) temperature at the inlet is taken to be 373 K while flow was at atmospheric pressure. This makes shorter waiting period of bubble nucleation, and the number density of bubbles on the solid surface increases. This results in enhancement of the boiling effect, and thus with the presence of bubbles, the mixing of laminar boundary layers improves and enhances the overall heat transfer coefficient. Channel amplitude play an important factor that can suitably reduce the friction factor and enhances the heat transfer coefficient.\",\"PeriodicalId\":137208,\"journal\":{\"name\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICNMM2018-7735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

微通道散热片流动沸腾为高功率密度微器件提供了一种有效的冷却解决方案。基于体积分数模型(VOF)和考虑液-气相变化的蒸发冷凝模型,对波浪状微通道饱和流沸腾过程中汽泡的形成进行了三维数值模拟研究。在基材的底表面施加恒定的壁热流,而其他面是绝缘的。为了理解共轭效应,对衬底厚度与沟道深度比(δsf ~ 1-5)、衬底壁与流体导热系数比(ksf ~ 22-300)和波纹度(γ ~ 0.008-0.04)进行了模拟。气泡的成核、生长和离开对波状微通道中两相流动的传热和压降特性有重要影响。入口冷却剂(水)温度取为373 K,流量为大气压。这使得气泡成核的等待时间缩短,固体表面气泡的数量密度增加。这导致沸腾效果的增强,因此随着气泡的存在,层流边界层的混合改善并提高了总体传热系数。通道振幅是适当降低摩擦系数,提高换热系数的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Phase Flow Conjugate Heat Transfer in Wavy Microchannel
Flow boiling in microchannel heat sink offers an effective cooling solution for high power density micro devices. A three-dimensional numerical study based on volume of fraction model (VOF) coupled with evaporation condensation model accounting for the liquid-vapor phase change is undertaken to recreate vapor bubble formation in saturated flow boiling in wavy microchannel. Constant wall heat flux imposed at the bottom surface of the substrate while other faces are insulated. To understand the conjugate effects, simulations has been carried out for substrate thickness to channel depth ratio (δsf ∼ 1–5), substrate wall to fluid thermal conductivity ratio (ksf ∼ 22–300) and waviness (γ ∼ 0.008–0.04). Bubble nucleation, growth, and departure of bubble plays a significant role in heat transfer and pressure drop characteristics in two-phase flow in wavy microchannel. The coolant (water) temperature at the inlet is taken to be 373 K while flow was at atmospheric pressure. This makes shorter waiting period of bubble nucleation, and the number density of bubbles on the solid surface increases. This results in enhancement of the boiling effect, and thus with the presence of bubbles, the mixing of laminar boundary layers improves and enhances the overall heat transfer coefficient. Channel amplitude play an important factor that can suitably reduce the friction factor and enhances the heat transfer coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信