遗传算法中交叉效应分析

M. Yamamura, H. Satoh, S. Kobayashi
{"title":"遗传算法中交叉效应分析","authors":"M. Yamamura, H. Satoh, S. Kobayashi","doi":"10.1109/ICEC.1994.349989","DOIUrl":null,"url":null,"abstract":"The crossover operation is characteristic of genetic algorithms (GAs). This paper analyzes the crossover effect in GAs. We start with two bits, that is the minimum chromosome length to crossover. We compare one operator GAs, using only selection, and two operators GAs by selection and crossover with respect to the expected quality and speed of the convergence. First, we analyse the case of two individuals, that is the minimum population size, by a Markov chain. We show the boundary in the fitness assignment cube where crossover improves the absorption probability to the optimum. We also show that crossover always speeds up convergence. Second, we analyse the larger population case by numerically solving the difference equations. We show a boundary where the crossover speeds up convergence. Normal medium sized GAs can be positioned between these two extremes.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An analysis of crossover's effect in genetic algorithms\",\"authors\":\"M. Yamamura, H. Satoh, S. Kobayashi\",\"doi\":\"10.1109/ICEC.1994.349989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crossover operation is characteristic of genetic algorithms (GAs). This paper analyzes the crossover effect in GAs. We start with two bits, that is the minimum chromosome length to crossover. We compare one operator GAs, using only selection, and two operators GAs by selection and crossover with respect to the expected quality and speed of the convergence. First, we analyse the case of two individuals, that is the minimum population size, by a Markov chain. We show the boundary in the fitness assignment cube where crossover improves the absorption probability to the optimum. We also show that crossover always speeds up convergence. Second, we analyse the larger population case by numerically solving the difference equations. We show a boundary where the crossover speeds up convergence. Normal medium sized GAs can be positioned between these two extremes.<<ETX>>\",\"PeriodicalId\":393865,\"journal\":{\"name\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1994.349989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.349989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

交叉操作是遗传算法的特点。本文分析了GAs中的交叉效应。我们从两个比特开始,这是可以交叉的最小染色体长度。我们比较了仅使用选择的一个算子GAs和使用选择和交叉的两个算子GAs关于收敛的期望质量和速度。首先,我们用马尔可夫链分析了最小种群大小为两个个体的情况。我们在适应度分配立方体中显示了边界,其中交叉将吸收概率提高到最佳。我们还表明,交叉总是加速收敛。其次,我们通过数值求解差分方程来分析较大的总体情况。我们展示了一个边界,其中交叉加速了收敛。正常的中型燃气可以定位在这两个极端之间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of crossover's effect in genetic algorithms
The crossover operation is characteristic of genetic algorithms (GAs). This paper analyzes the crossover effect in GAs. We start with two bits, that is the minimum chromosome length to crossover. We compare one operator GAs, using only selection, and two operators GAs by selection and crossover with respect to the expected quality and speed of the convergence. First, we analyse the case of two individuals, that is the minimum population size, by a Markov chain. We show the boundary in the fitness assignment cube where crossover improves the absorption probability to the optimum. We also show that crossover always speeds up convergence. Second, we analyse the larger population case by numerically solving the difference equations. We show a boundary where the crossover speeds up convergence. Normal medium sized GAs can be positioned between these two extremes.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信