{"title":"利用TCP稳态行为的可预测性来加速网络模拟","authors":"Qi He, M. Ammar, G. Riley, R. Fujimoto","doi":"10.1109/MASCOT.2002.1167066","DOIUrl":null,"url":null,"abstract":"In discrete-event network simulation, a significant portion of resources and computation are dedicated to the creation and processing of packet transmission events. For large-scale network simulations with a large number of high-speed data flows, the processing of packet events is the most time consuming aspect of the simulation. We develop a technique that saves on the processing of packet events for TCP flows using the well established results showing that the average behavior of a TCP flow is predictable given a steady-state path condition. We exploit this to predict the average behavior of a TCP flow over a future period of time where steady-state conditions hold, thus allowing for a reduction (or elimination) of the processing required for packet events during this period. We consider two approaches to predicting TCP's steady-state behavior: using throughput formulas or by direct monitoring of a flow's throughput in a simulation. We design a simulation framework that provides the flexibility to incorporate this method of simulating TCP packet flows. Our goal is (1) to accommodate different network configurations, on/off flow behavior and interaction between predicted flows and packet-based flows; and (2) to preserve the statistical behavior of every entity in the system, from hosts to routers to links, so as to maintain the accuracy of the network simulation as a whole. In order to illustrate the promise of this idea we implement it in the context of the ns2 simulation system. A set of experiments illustrate the speedup and approximation of the simulation framework under different scenarios and for different network performance metrics.","PeriodicalId":384900,"journal":{"name":"Proceedings. 10th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems","volume":"365 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Exploiting the predictability of TCP's steady-state behavior to speed up network simulation\",\"authors\":\"Qi He, M. Ammar, G. Riley, R. Fujimoto\",\"doi\":\"10.1109/MASCOT.2002.1167066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In discrete-event network simulation, a significant portion of resources and computation are dedicated to the creation and processing of packet transmission events. For large-scale network simulations with a large number of high-speed data flows, the processing of packet events is the most time consuming aspect of the simulation. We develop a technique that saves on the processing of packet events for TCP flows using the well established results showing that the average behavior of a TCP flow is predictable given a steady-state path condition. We exploit this to predict the average behavior of a TCP flow over a future period of time where steady-state conditions hold, thus allowing for a reduction (or elimination) of the processing required for packet events during this period. We consider two approaches to predicting TCP's steady-state behavior: using throughput formulas or by direct monitoring of a flow's throughput in a simulation. We design a simulation framework that provides the flexibility to incorporate this method of simulating TCP packet flows. Our goal is (1) to accommodate different network configurations, on/off flow behavior and interaction between predicted flows and packet-based flows; and (2) to preserve the statistical behavior of every entity in the system, from hosts to routers to links, so as to maintain the accuracy of the network simulation as a whole. In order to illustrate the promise of this idea we implement it in the context of the ns2 simulation system. A set of experiments illustrate the speedup and approximation of the simulation framework under different scenarios and for different network performance metrics.\",\"PeriodicalId\":384900,\"journal\":{\"name\":\"Proceedings. 10th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems\",\"volume\":\"365 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 10th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOT.2002.1167066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 10th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2002.1167066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting the predictability of TCP's steady-state behavior to speed up network simulation
In discrete-event network simulation, a significant portion of resources and computation are dedicated to the creation and processing of packet transmission events. For large-scale network simulations with a large number of high-speed data flows, the processing of packet events is the most time consuming aspect of the simulation. We develop a technique that saves on the processing of packet events for TCP flows using the well established results showing that the average behavior of a TCP flow is predictable given a steady-state path condition. We exploit this to predict the average behavior of a TCP flow over a future period of time where steady-state conditions hold, thus allowing for a reduction (or elimination) of the processing required for packet events during this period. We consider two approaches to predicting TCP's steady-state behavior: using throughput formulas or by direct monitoring of a flow's throughput in a simulation. We design a simulation framework that provides the flexibility to incorporate this method of simulating TCP packet flows. Our goal is (1) to accommodate different network configurations, on/off flow behavior and interaction between predicted flows and packet-based flows; and (2) to preserve the statistical behavior of every entity in the system, from hosts to routers to links, so as to maintain the accuracy of the network simulation as a whole. In order to illustrate the promise of this idea we implement it in the context of the ns2 simulation system. A set of experiments illustrate the speedup and approximation of the simulation framework under different scenarios and for different network performance metrics.