韩语作文自动评分的深度学习算法探索

Kang Yun Park, Yong-Sang Lee
{"title":"韩语作文自动评分的深度学习算法探索","authors":"Kang Yun Park, Yong-Sang Lee","doi":"10.31158/jeev.2022.35.3.465","DOIUrl":null,"url":null,"abstract":"This study was carried out for the purpose of searching for the optimal algorithm for automated scoring system of Korean essay through the comparison of deep learning-based learning models. For this purpose, in this study, deep learning algorithms such as Recurrent Neural Network (RNN), Long-Short-Term-Memory (LSTM), and Gated-Recurrent-Unit (GRU) algorithms were compared. The performance of each algorithm was evaluated based on classification accuracy, precision, recall, and F1. The empirical results showed that the LSTM and GRU algorithm-based models performed better than RNN. Although there is no significant difference in model performance between LSTM and GRU, the GRU algorithm was found to be more efficient in terms of the time required to train the model, so it could be considered to be the optimal algorithm for automated scoring if the machine leanring time is critical.","PeriodicalId":207460,"journal":{"name":"Korean Society for Educational Evaluation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Algorithm Exploration for Automated Korean essay Scoring\",\"authors\":\"Kang Yun Park, Yong-Sang Lee\",\"doi\":\"10.31158/jeev.2022.35.3.465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was carried out for the purpose of searching for the optimal algorithm for automated scoring system of Korean essay through the comparison of deep learning-based learning models. For this purpose, in this study, deep learning algorithms such as Recurrent Neural Network (RNN), Long-Short-Term-Memory (LSTM), and Gated-Recurrent-Unit (GRU) algorithms were compared. The performance of each algorithm was evaluated based on classification accuracy, precision, recall, and F1. The empirical results showed that the LSTM and GRU algorithm-based models performed better than RNN. Although there is no significant difference in model performance between LSTM and GRU, the GRU algorithm was found to be more efficient in terms of the time required to train the model, so it could be considered to be the optimal algorithm for automated scoring if the machine leanring time is critical.\",\"PeriodicalId\":207460,\"journal\":{\"name\":\"Korean Society for Educational Evaluation\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Society for Educational Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31158/jeev.2022.35.3.465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Society for Educational Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31158/jeev.2022.35.3.465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过比较基于深度学习的学习模型,寻找韩语作文自动评分系统的最优算法。为此,本研究比较了递归神经网络(RNN)、长短期记忆(LSTM)和门控递归单元(GRU)等深度学习算法。基于分类准确率、精度、召回率和F1对每种算法的性能进行了评估。实证结果表明,基于LSTM和GRU算法的模型优于RNN。虽然LSTM和GRU算法在模型性能上没有显著差异,但我们发现GRU算法在训练模型所需的时间上更有效率,因此在机器学习时间很关键的情况下,GRU算法可以被认为是自动评分的最优算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Algorithm Exploration for Automated Korean essay Scoring
This study was carried out for the purpose of searching for the optimal algorithm for automated scoring system of Korean essay through the comparison of deep learning-based learning models. For this purpose, in this study, deep learning algorithms such as Recurrent Neural Network (RNN), Long-Short-Term-Memory (LSTM), and Gated-Recurrent-Unit (GRU) algorithms were compared. The performance of each algorithm was evaluated based on classification accuracy, precision, recall, and F1. The empirical results showed that the LSTM and GRU algorithm-based models performed better than RNN. Although there is no significant difference in model performance between LSTM and GRU, the GRU algorithm was found to be more efficient in terms of the time required to train the model, so it could be considered to be the optimal algorithm for automated scoring if the machine leanring time is critical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信