实时单镜头多人脸检测、地标定位和性别分类

T. Shen, D. Wang, Kayton Wai Keung Cheung, M. C. Chan, King Hung Chiu, Yiu Kei Li
{"title":"实时单镜头多人脸检测、地标定位和性别分类","authors":"T. Shen, D. Wang, Kayton Wai Keung Cheung, M. C. Chan, King Hung Chiu, Yiu Kei Li","doi":"10.1145/3469951.3469952","DOIUrl":null,"url":null,"abstract":"Face detection and gender classification by Deep Neural Networks can find application in areas such as video surveillance, customized advertisement, and human-computer interaction. This paper presents a real-time single-shot multi-face gender detector based on Convolutional neural network (CNN). The proposed method not only detects face but also classifies the gender of persons in the wild, meaning in images with a high variability in pose, illumination, and occlusion. To train and evaluate the results, a new annotated set of face images is created. Our experimental results show that the proposed method achieves excellent performance in term of speed and accuracy.","PeriodicalId":313453,"journal":{"name":"Proceedings of the 2021 3rd International Conference on Image Processing and Machine Vision","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Real-Time Single-Shot Multi-Face Detection, Landmark Localization, and Gender Classification\",\"authors\":\"T. Shen, D. Wang, Kayton Wai Keung Cheung, M. C. Chan, King Hung Chiu, Yiu Kei Li\",\"doi\":\"10.1145/3469951.3469952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face detection and gender classification by Deep Neural Networks can find application in areas such as video surveillance, customized advertisement, and human-computer interaction. This paper presents a real-time single-shot multi-face gender detector based on Convolutional neural network (CNN). The proposed method not only detects face but also classifies the gender of persons in the wild, meaning in images with a high variability in pose, illumination, and occlusion. To train and evaluate the results, a new annotated set of face images is created. Our experimental results show that the proposed method achieves excellent performance in term of speed and accuracy.\",\"PeriodicalId\":313453,\"journal\":{\"name\":\"Proceedings of the 2021 3rd International Conference on Image Processing and Machine Vision\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 3rd International Conference on Image Processing and Machine Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469951.3469952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 3rd International Conference on Image Processing and Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469951.3469952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于深度神经网络的人脸检测和性别分类可以在视频监控、定制广告、人机交互等领域得到应用。本文提出了一种基于卷积神经网络(CNN)的实时单镜头多人脸性别检测器。所提出的方法不仅可以检测人脸,还可以在野外对人的性别进行分类,这意味着在姿势,照明和遮挡的高度变化的图像中。为了训练和评估结果,创建了一组新的带注释的人脸图像。实验结果表明,该方法在速度和精度方面都取得了优异的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Real-Time Single-Shot Multi-Face Detection, Landmark Localization, and Gender Classification
Face detection and gender classification by Deep Neural Networks can find application in areas such as video surveillance, customized advertisement, and human-computer interaction. This paper presents a real-time single-shot multi-face gender detector based on Convolutional neural network (CNN). The proposed method not only detects face but also classifies the gender of persons in the wild, meaning in images with a high variability in pose, illumination, and occlusion. To train and evaluate the results, a new annotated set of face images is created. Our experimental results show that the proposed method achieves excellent performance in term of speed and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信