远离机器人互动:评估由计算机系统表达和检测的同理心、情感和情绪

N. Gasteiger, Jongyoon Lim, Mehdi Hellou, Bruce A. MacDonald, H. Ahn
{"title":"远离机器人互动:评估由计算机系统表达和检测的同理心、情感和情绪","authors":"N. Gasteiger, Jongyoon Lim, Mehdi Hellou, Bruce A. MacDonald, H. Ahn","doi":"10.1109/RO-MAN53752.2022.9900559","DOIUrl":null,"url":null,"abstract":"Social robots are often critiqued as being too ‘robotic’ and unemotional. For affective human-robot interaction (HRI), robots must detect sentiment and express emotion and empathy in return. We explored the extent to which people can detect emotions, empathy and sentiment from speech expressed by a computer system, with a focus on changes in prosody (pitch, tone, volume) and how people identify sentiment from written text, compared to a sentiment analyzer. 89 participants identified empathy, emotion and sentiment from audio and text embedded in a survey. Empathy and sentiment were best expressed in the audio, while emotions were the most difficult detect (75%, 67% and 42% respectively). We found moderate agreement (70%) between the sentiment identified by the participants and the analyzer. There is potential for computer systems to express affect by using changes in prosody, as well as analyzing text to identify sentiment. This may help to further develop affective capabilities and appropriate responses in social robots, in order to avoid ‘robotic’ interactions. Future research should explore how to better express negative sentiment and emotions, while leveraging multi-modal approaches to HRI.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Moving away from robotic interactions: Evaluation of empathy, emotion and sentiment expressed and detected by computer systems\",\"authors\":\"N. Gasteiger, Jongyoon Lim, Mehdi Hellou, Bruce A. MacDonald, H. Ahn\",\"doi\":\"10.1109/RO-MAN53752.2022.9900559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social robots are often critiqued as being too ‘robotic’ and unemotional. For affective human-robot interaction (HRI), robots must detect sentiment and express emotion and empathy in return. We explored the extent to which people can detect emotions, empathy and sentiment from speech expressed by a computer system, with a focus on changes in prosody (pitch, tone, volume) and how people identify sentiment from written text, compared to a sentiment analyzer. 89 participants identified empathy, emotion and sentiment from audio and text embedded in a survey. Empathy and sentiment were best expressed in the audio, while emotions were the most difficult detect (75%, 67% and 42% respectively). We found moderate agreement (70%) between the sentiment identified by the participants and the analyzer. There is potential for computer systems to express affect by using changes in prosody, as well as analyzing text to identify sentiment. This may help to further develop affective capabilities and appropriate responses in social robots, in order to avoid ‘robotic’ interactions. Future research should explore how to better express negative sentiment and emotions, while leveraging multi-modal approaches to HRI.\",\"PeriodicalId\":250997,\"journal\":{\"name\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN53752.2022.9900559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

社交机器人经常被批评为过于“机械”和缺乏情感。对于情感人机交互(HRI),机器人必须检测情感并表达情感和同理心作为回报。我们探索了人们在多大程度上可以从计算机系统表达的语音中检测到情绪、同理心和情绪,重点关注韵律(音高、音调、音量)的变化,以及与情感分析仪相比,人们如何从书面文本中识别情绪。89名参与者从调查中嵌入的音频和文本中识别出同理心、情感和情绪。共鸣和情感在音频中表达得最好,而情绪是最难察觉的(分别为75%,67%和42%)。我们发现适度的协议(70%)之间的情绪确定的参与者和分析师。计算机系统有可能通过韵律的变化来表达情感,也有可能通过分析文本来识别情感。这可能有助于进一步发展社交机器人的情感能力和适当的反应,以避免“机器人”互动。未来的研究应该探索如何更好地表达负面情绪和情绪,同时利用多模态方法来进行人力资源调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving away from robotic interactions: Evaluation of empathy, emotion and sentiment expressed and detected by computer systems
Social robots are often critiqued as being too ‘robotic’ and unemotional. For affective human-robot interaction (HRI), robots must detect sentiment and express emotion and empathy in return. We explored the extent to which people can detect emotions, empathy and sentiment from speech expressed by a computer system, with a focus on changes in prosody (pitch, tone, volume) and how people identify sentiment from written text, compared to a sentiment analyzer. 89 participants identified empathy, emotion and sentiment from audio and text embedded in a survey. Empathy and sentiment were best expressed in the audio, while emotions were the most difficult detect (75%, 67% and 42% respectively). We found moderate agreement (70%) between the sentiment identified by the participants and the analyzer. There is potential for computer systems to express affect by using changes in prosody, as well as analyzing text to identify sentiment. This may help to further develop affective capabilities and appropriate responses in social robots, in order to avoid ‘robotic’ interactions. Future research should explore how to better express negative sentiment and emotions, while leveraging multi-modal approaches to HRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信