构建机器人工作单元预测和健康管理的数字孪生体

D. Kibira, Guodong Shao, B. Weiss
{"title":"构建机器人工作单元预测和健康管理的数字孪生体","authors":"D. Kibira, Guodong Shao, B. Weiss","doi":"10.1109/WSC52266.2021.9715501","DOIUrl":null,"url":null,"abstract":"The application of robot workcells increases the efficiency and cost effectiveness of manufacturing systems. However, during operation, robots naturally degrade leading to performance deterioration. Monitoring, diagnostics, and prognostics (collectively known as prognostics and health management (PHM)) capabilities enable required maintenance actions to be performed in a timely manner. Noting the importance of data-based decisions in many current systems, effective PHM should be based on the analysis of data. The main challenges with robot PHM are the difficulties of relating data to healthy and unhealthy states, and lack of models to fuse and analyze up-to-date data to predict the future state of the robot. This paper describes concepts of digital twin development to overcome the above challenges. A use case of a digital twin modeling robot tool center point accuracy is provided. The proposed procedure for this digital twin will be applicable to different use cases such as reduced repeatability or increased power consumption.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Buiding a Digital Twin for Robot Workcell Prognostics And Health Management\",\"authors\":\"D. Kibira, Guodong Shao, B. Weiss\",\"doi\":\"10.1109/WSC52266.2021.9715501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of robot workcells increases the efficiency and cost effectiveness of manufacturing systems. However, during operation, robots naturally degrade leading to performance deterioration. Monitoring, diagnostics, and prognostics (collectively known as prognostics and health management (PHM)) capabilities enable required maintenance actions to be performed in a timely manner. Noting the importance of data-based decisions in many current systems, effective PHM should be based on the analysis of data. The main challenges with robot PHM are the difficulties of relating data to healthy and unhealthy states, and lack of models to fuse and analyze up-to-date data to predict the future state of the robot. This paper describes concepts of digital twin development to overcome the above challenges. A use case of a digital twin modeling robot tool center point accuracy is provided. The proposed procedure for this digital twin will be applicable to different use cases such as reduced repeatability or increased power consumption.\",\"PeriodicalId\":369368,\"journal\":{\"name\":\"2021 Winter Simulation Conference (WSC)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC52266.2021.9715501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器人工作单元的应用提高了制造系统的效率和成本效益。然而,在操作过程中,机器人会自然退化,导致性能下降。监视、诊断和预测(统称为预测和运行状况管理(PHM))功能支持及时执行所需的维护操作。注意到当前许多系统中基于数据的决策的重要性,有效的PHM应该基于数据分析。机器人PHM面临的主要挑战是将健康和不健康状态的数据关联起来的困难,以及缺乏融合和分析最新数据以预测机器人未来状态的模型。本文介绍了数字孪生发展的概念,以克服上述挑战。给出了数字孪生建模机器人刀具中心点精度的一个用例。这个数字孪生的拟议过程将适用于不同的用例,例如可重复性降低或功耗增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buiding a Digital Twin for Robot Workcell Prognostics And Health Management
The application of robot workcells increases the efficiency and cost effectiveness of manufacturing systems. However, during operation, robots naturally degrade leading to performance deterioration. Monitoring, diagnostics, and prognostics (collectively known as prognostics and health management (PHM)) capabilities enable required maintenance actions to be performed in a timely manner. Noting the importance of data-based decisions in many current systems, effective PHM should be based on the analysis of data. The main challenges with robot PHM are the difficulties of relating data to healthy and unhealthy states, and lack of models to fuse and analyze up-to-date data to predict the future state of the robot. This paper describes concepts of digital twin development to overcome the above challenges. A use case of a digital twin modeling robot tool center point accuracy is provided. The proposed procedure for this digital twin will be applicable to different use cases such as reduced repeatability or increased power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信