基于主动和被动节点贝叶斯滤波器的闭环检测

M. Salameh, A. Abdullah, S. Sahran
{"title":"基于主动和被动节点贝叶斯滤波器的闭环检测","authors":"M. Salameh, A. Abdullah, S. Sahran","doi":"10.1109/ICAR.2017.8023653","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a novel extension of the real-time appearance-based mapping (RTAB-Map), called the Ensemble of Real-Time Appearance-Based Mapping (ERTAB-Map). The original RTAB-Map calculates the probabilities of multiple beliefs for loop closure detection based on a single descriptor model. However, the ERTAB-Map can use an arbitrary number of descriptor models, in which a set of probability belief models are evaluated using an ensemble learning approach. The probability values are extracted from the active working memory and the passive long term memory of RTAB-Map. We have performed experiments on 388 images from the Lib6Indoor and 1063 images from Lib6Outdoor datasets. The results show that our ensemble of active and passive outperforms the original RTAB-Map. Furthermore, the ensemble achieves a recall of 91.59% and 98.65% on the Lib6Indoor and Lib6Outdoor respectively, with a corresponding precision of 100%.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ensemble of Bayesian filter with active and passive nodes for loop closure detection\",\"authors\":\"M. Salameh, A. Abdullah, S. Sahran\",\"doi\":\"10.1109/ICAR.2017.8023653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a novel extension of the real-time appearance-based mapping (RTAB-Map), called the Ensemble of Real-Time Appearance-Based Mapping (ERTAB-Map). The original RTAB-Map calculates the probabilities of multiple beliefs for loop closure detection based on a single descriptor model. However, the ERTAB-Map can use an arbitrary number of descriptor models, in which a set of probability belief models are evaluated using an ensemble learning approach. The probability values are extracted from the active working memory and the passive long term memory of RTAB-Map. We have performed experiments on 388 images from the Lib6Indoor and 1063 images from Lib6Outdoor datasets. The results show that our ensemble of active and passive outperforms the original RTAB-Map. Furthermore, the ensemble achieves a recall of 91.59% and 98.65% on the Lib6Indoor and Lib6Outdoor respectively, with a corresponding precision of 100%.\",\"PeriodicalId\":198633,\"journal\":{\"name\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2017.8023653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们描述了实时基于外观的映射(RTAB-Map)的一个新的扩展,称为实时基于外观的映射集成(ERTAB-Map)。原始的RTAB-Map基于单个描述符模型计算用于循环关闭检测的多个信念的概率。然而,ERTAB-Map可以使用任意数量的描述符模型,其中一组概率信念模型使用集成学习方法进行评估。从RTAB-Map的主动工作记忆和被动长期记忆中提取概率值。我们对来自Lib6Indoor数据集的388张图像和来自Lib6Outdoor数据集的1063张图像进行了实验。结果表明,我们的主动式和被动式集成优于原始RTAB-Map。此外,该集合在Lib6Indoor和Lib6Outdoor上的召回率分别为91.59%和98.65%,对应的精度为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble of Bayesian filter with active and passive nodes for loop closure detection
In this paper, we describe a novel extension of the real-time appearance-based mapping (RTAB-Map), called the Ensemble of Real-Time Appearance-Based Mapping (ERTAB-Map). The original RTAB-Map calculates the probabilities of multiple beliefs for loop closure detection based on a single descriptor model. However, the ERTAB-Map can use an arbitrary number of descriptor models, in which a set of probability belief models are evaluated using an ensemble learning approach. The probability values are extracted from the active working memory and the passive long term memory of RTAB-Map. We have performed experiments on 388 images from the Lib6Indoor and 1063 images from Lib6Outdoor datasets. The results show that our ensemble of active and passive outperforms the original RTAB-Map. Furthermore, the ensemble achieves a recall of 91.59% and 98.65% on the Lib6Indoor and Lib6Outdoor respectively, with a corresponding precision of 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信