生物雷达数据分析的经验模态分解算法

L. Anishchenko
{"title":"生物雷达数据分析的经验模态分解算法","authors":"L. Anishchenko","doi":"10.1109/COMCAS.2015.7360429","DOIUrl":null,"url":null,"abstract":"In present work we discuss the usage of empirical mode decomposition algorithm for bioradar data processing. The algorithm of data processing is considered and the value of the threshold criteria is chosen according to the results of the experimental data processing. It is shown that preprocessing of raw bioradar data, which compensate the difference in amplitude of breathing and heartbeat signals, increases the effectiveness of empirical mode decomposition algorithm in bioradar data processing.","PeriodicalId":431569,"journal":{"name":"2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Empirical mode decomposition algorithm for bioradar data analysis\",\"authors\":\"L. Anishchenko\",\"doi\":\"10.1109/COMCAS.2015.7360429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In present work we discuss the usage of empirical mode decomposition algorithm for bioradar data processing. The algorithm of data processing is considered and the value of the threshold criteria is chosen according to the results of the experimental data processing. It is shown that preprocessing of raw bioradar data, which compensate the difference in amplitude of breathing and heartbeat signals, increases the effectiveness of empirical mode decomposition algorithm in bioradar data processing.\",\"PeriodicalId\":431569,\"journal\":{\"name\":\"2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMCAS.2015.7360429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMCAS.2015.7360429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本工作中,我们讨论了经验模式分解算法在生物雷达数据处理中的应用。考虑了数据处理的算法,并根据实验数据处理结果选择了阈值准则的取值。实验结果表明,生物雷达原始数据的预处理补偿了呼吸和心跳信号的幅值差异,提高了经验模态分解算法在生物雷达数据处理中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical mode decomposition algorithm for bioradar data analysis
In present work we discuss the usage of empirical mode decomposition algorithm for bioradar data processing. The algorithm of data processing is considered and the value of the threshold criteria is chosen according to the results of the experimental data processing. It is shown that preprocessing of raw bioradar data, which compensate the difference in amplitude of breathing and heartbeat signals, increases the effectiveness of empirical mode decomposition algorithm in bioradar data processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信