{"title":"链接语篇标记量表","authors":"C. Chiarcos, Maxim Ionov","doi":"10.4230/OASIcs.LDK.2021.40","DOIUrl":null,"url":null,"abstract":"The paper describes the first comprehensive edition of machine-readable discourse marker lexicons. Discourse markers such as and, because, but, though or thereafter are essential communicative signals in human conversation, as they indicate how an utterance relates to its communicative context. As much of this information is implicit or expressed differently in different languages, discourse parsing, context-adequate natural language generation and machine translation are considered particularly challenging aspects of Natural Language Processing. Providing this data in machine-readable, standard-compliant form will thus facilitate such technical tasks, and moreover, allow to explore techniques for translation inference to be applied to this particular group of lexical resources that was previously largely neglected in the context of Linguistic Linked (Open) Data.","PeriodicalId":377119,"journal":{"name":"International Conference on Language, Data, and Knowledge","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Linking Discourse Marker Inventories\",\"authors\":\"C. Chiarcos, Maxim Ionov\",\"doi\":\"10.4230/OASIcs.LDK.2021.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes the first comprehensive edition of machine-readable discourse marker lexicons. Discourse markers such as and, because, but, though or thereafter are essential communicative signals in human conversation, as they indicate how an utterance relates to its communicative context. As much of this information is implicit or expressed differently in different languages, discourse parsing, context-adequate natural language generation and machine translation are considered particularly challenging aspects of Natural Language Processing. Providing this data in machine-readable, standard-compliant form will thus facilitate such technical tasks, and moreover, allow to explore techniques for translation inference to be applied to this particular group of lexical resources that was previously largely neglected in the context of Linguistic Linked (Open) Data.\",\"PeriodicalId\":377119,\"journal\":{\"name\":\"International Conference on Language, Data, and Knowledge\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Language, Data, and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.LDK.2021.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Language, Data, and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.LDK.2021.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The paper describes the first comprehensive edition of machine-readable discourse marker lexicons. Discourse markers such as and, because, but, though or thereafter are essential communicative signals in human conversation, as they indicate how an utterance relates to its communicative context. As much of this information is implicit or expressed differently in different languages, discourse parsing, context-adequate natural language generation and machine translation are considered particularly challenging aspects of Natural Language Processing. Providing this data in machine-readable, standard-compliant form will thus facilitate such technical tasks, and moreover, allow to explore techniques for translation inference to be applied to this particular group of lexical resources that was previously largely neglected in the context of Linguistic Linked (Open) Data.