链接语篇标记量表

C. Chiarcos, Maxim Ionov
{"title":"链接语篇标记量表","authors":"C. Chiarcos, Maxim Ionov","doi":"10.4230/OASIcs.LDK.2021.40","DOIUrl":null,"url":null,"abstract":"The paper describes the first comprehensive edition of machine-readable discourse marker lexicons. Discourse markers such as and, because, but, though or thereafter are essential communicative signals in human conversation, as they indicate how an utterance relates to its communicative context. As much of this information is implicit or expressed differently in different languages, discourse parsing, context-adequate natural language generation and machine translation are considered particularly challenging aspects of Natural Language Processing. Providing this data in machine-readable, standard-compliant form will thus facilitate such technical tasks, and moreover, allow to explore techniques for translation inference to be applied to this particular group of lexical resources that was previously largely neglected in the context of Linguistic Linked (Open) Data.","PeriodicalId":377119,"journal":{"name":"International Conference on Language, Data, and Knowledge","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Linking Discourse Marker Inventories\",\"authors\":\"C. Chiarcos, Maxim Ionov\",\"doi\":\"10.4230/OASIcs.LDK.2021.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes the first comprehensive edition of machine-readable discourse marker lexicons. Discourse markers such as and, because, but, though or thereafter are essential communicative signals in human conversation, as they indicate how an utterance relates to its communicative context. As much of this information is implicit or expressed differently in different languages, discourse parsing, context-adequate natural language generation and machine translation are considered particularly challenging aspects of Natural Language Processing. Providing this data in machine-readable, standard-compliant form will thus facilitate such technical tasks, and moreover, allow to explore techniques for translation inference to be applied to this particular group of lexical resources that was previously largely neglected in the context of Linguistic Linked (Open) Data.\",\"PeriodicalId\":377119,\"journal\":{\"name\":\"International Conference on Language, Data, and Knowledge\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Language, Data, and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.LDK.2021.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Language, Data, and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.LDK.2021.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了第一个机器可读话语标记词的综合版本。“和”、“因为”、“但是”、“尽管”或“此后”等话语标记是人类对话中必不可少的交际信号,它们表明了话语与交际语境的关系。由于这些信息在不同的语言中是隐含的或以不同的方式表达的,因此语篇解析、符合上下文的自然语言生成和机器翻译被认为是自然语言处理中特别具有挑战性的方面。因此,以机器可读的、符合标准的形式提供这些数据将促进这些技术任务,而且,允许探索翻译推理技术,将其应用于以前在语言链接(开放)数据的上下文中很大程度上被忽视的特定词汇资源组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linking Discourse Marker Inventories
The paper describes the first comprehensive edition of machine-readable discourse marker lexicons. Discourse markers such as and, because, but, though or thereafter are essential communicative signals in human conversation, as they indicate how an utterance relates to its communicative context. As much of this information is implicit or expressed differently in different languages, discourse parsing, context-adequate natural language generation and machine translation are considered particularly challenging aspects of Natural Language Processing. Providing this data in machine-readable, standard-compliant form will thus facilitate such technical tasks, and moreover, allow to explore techniques for translation inference to be applied to this particular group of lexical resources that was previously largely neglected in the context of Linguistic Linked (Open) Data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信