{"title":"足够的支持信息,以确保阶段问题的唯一解决方案","authors":"B. Brames","doi":"10.1364/srs.1986.thc2","DOIUrl":null,"url":null,"abstract":"It is evident that the support of a function can have a strong influence upon one’s ability to uniquely reconstruct that function from its autocorrelation, both in terms of solution multiplicity, and in the convergence of certain reconstruction algorithms. Greenaway [1] first demonstrated that the number of solutions to the one—dimensional phase problem is reduced if an internal region of the function in question is known to be zero. This is a strong statement, because generally the one-dimensional phase problem is intractable due to large numbers of non-equivalent solutions. More recently Sault [2] has shown that one can always ensure solution uniqueness for discrete functions if the internal zero region is specified and somewhat more complex.","PeriodicalId":262149,"journal":{"name":"Topical Meeting On Signal Recovery and Synthesis II","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sufficient Support Information to Ensure a Unique Solution to the Phase Problem\",\"authors\":\"B. Brames\",\"doi\":\"10.1364/srs.1986.thc2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is evident that the support of a function can have a strong influence upon one’s ability to uniquely reconstruct that function from its autocorrelation, both in terms of solution multiplicity, and in the convergence of certain reconstruction algorithms. Greenaway [1] first demonstrated that the number of solutions to the one—dimensional phase problem is reduced if an internal region of the function in question is known to be zero. This is a strong statement, because generally the one-dimensional phase problem is intractable due to large numbers of non-equivalent solutions. More recently Sault [2] has shown that one can always ensure solution uniqueness for discrete functions if the internal zero region is specified and somewhat more complex.\",\"PeriodicalId\":262149,\"journal\":{\"name\":\"Topical Meeting On Signal Recovery and Synthesis II\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topical Meeting On Signal Recovery and Synthesis II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1986.thc2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting On Signal Recovery and Synthesis II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1986.thc2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sufficient Support Information to Ensure a Unique Solution to the Phase Problem
It is evident that the support of a function can have a strong influence upon one’s ability to uniquely reconstruct that function from its autocorrelation, both in terms of solution multiplicity, and in the convergence of certain reconstruction algorithms. Greenaway [1] first demonstrated that the number of solutions to the one—dimensional phase problem is reduced if an internal region of the function in question is known to be zero. This is a strong statement, because generally the one-dimensional phase problem is intractable due to large numbers of non-equivalent solutions. More recently Sault [2] has shown that one can always ensure solution uniqueness for discrete functions if the internal zero region is specified and somewhat more complex.