基于多分量二元高斯混合模型的T2和DE MRI联合心肌分割

Jie Liu, X. Zhuang, Jing Liu, Shaoting Zhang, Guotai Wang, Lianming Wu, Jianrong Xu, Lixu Gu
{"title":"基于多分量二元高斯混合模型的T2和DE MRI联合心肌分割","authors":"Jie Liu, X. Zhuang, Jing Liu, Shaoting Zhang, Guotai Wang, Lianming Wu, Jianrong Xu, Lixu Gu","doi":"10.1109/ISBI.2014.6868013","DOIUrl":null,"url":null,"abstract":"Accurately delineating the myocardium from cardiac T2 and delayed enhanced (DE) MRI is a prerequisite to identifying and quantifying the edema and infarcts. The automatic delineation is however challenging due to the heterogeneous intensity distribution of the myocardium. In this paper, we propose a fully automatic method, which combines the complementary information from the two sequences using the newly proposed Multi-Component Bivariate Gaussian (MCBG) mixture model. The expectation maximization (EM) framework is adopted to estimate the segmentation and model parameters, where a probabilistic atlas is also used. This method performs the segmentation on the two MRI sequences simultaneously, and hence improves the robustness and accuracy. The results on six clinical cases showed that the proposed method significantly improved the performance compared to the atlas-based methods: myocardium Dice scores 0.643±0.084 versus 0.576±0.103 (P=0.002) on DE MRI, and 0.623±0.129 versus 0.484±0.106 (P=0.002) on T2 MRI.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"43 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Myocardium segmentation combining T2 and DE MRI using Multi-Component Bivariate Gaussian mixture model\",\"authors\":\"Jie Liu, X. Zhuang, Jing Liu, Shaoting Zhang, Guotai Wang, Lianming Wu, Jianrong Xu, Lixu Gu\",\"doi\":\"10.1109/ISBI.2014.6868013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately delineating the myocardium from cardiac T2 and delayed enhanced (DE) MRI is a prerequisite to identifying and quantifying the edema and infarcts. The automatic delineation is however challenging due to the heterogeneous intensity distribution of the myocardium. In this paper, we propose a fully automatic method, which combines the complementary information from the two sequences using the newly proposed Multi-Component Bivariate Gaussian (MCBG) mixture model. The expectation maximization (EM) framework is adopted to estimate the segmentation and model parameters, where a probabilistic atlas is also used. This method performs the segmentation on the two MRI sequences simultaneously, and hence improves the robustness and accuracy. The results on six clinical cases showed that the proposed method significantly improved the performance compared to the atlas-based methods: myocardium Dice scores 0.643±0.084 versus 0.576±0.103 (P=0.002) on DE MRI, and 0.623±0.129 versus 0.484±0.106 (P=0.002) on T2 MRI.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"43 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6868013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

从T2和延迟增强(DE) MRI准确描绘心肌是识别和量化水肿和梗死的先决条件。然而,由于心肌强度分布不均,自动圈定具有挑战性。在本文中,我们提出了一种全自动方法,利用新提出的多分量二元高斯(MCBG)混合模型将两个序列的互补信息结合起来。采用期望最大化框架对分割参数和模型参数进行估计,其中还使用了概率图谱。该方法同时对两个MRI序列进行分割,提高了分割的鲁棒性和准确性。6例临床病例的结果显示,与基于图谱的方法相比,该方法的性能有显著提高:DE MRI心肌Dice评分为0.643±0.084比0.576±0.103 (P=0.002), T2 MRI心肌Dice评分为0.623±0.129比0.484±0.106 (P=0.002)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Myocardium segmentation combining T2 and DE MRI using Multi-Component Bivariate Gaussian mixture model
Accurately delineating the myocardium from cardiac T2 and delayed enhanced (DE) MRI is a prerequisite to identifying and quantifying the edema and infarcts. The automatic delineation is however challenging due to the heterogeneous intensity distribution of the myocardium. In this paper, we propose a fully automatic method, which combines the complementary information from the two sequences using the newly proposed Multi-Component Bivariate Gaussian (MCBG) mixture model. The expectation maximization (EM) framework is adopted to estimate the segmentation and model parameters, where a probabilistic atlas is also used. This method performs the segmentation on the two MRI sequences simultaneously, and hence improves the robustness and accuracy. The results on six clinical cases showed that the proposed method significantly improved the performance compared to the atlas-based methods: myocardium Dice scores 0.643±0.084 versus 0.576±0.103 (P=0.002) on DE MRI, and 0.623±0.129 versus 0.484±0.106 (P=0.002) on T2 MRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信