压缩图像的量化DCT系数恢复

Tong Ouyang, Zhenzhong Chen, Shan Liu
{"title":"压缩图像的量化DCT系数恢复","authors":"Tong Ouyang, Zhenzhong Chen, Shan Liu","doi":"10.1109/VCIP49819.2020.9301794","DOIUrl":null,"url":null,"abstract":"Images and videos suffer from undesirable visual artifacts at high compression ratios, which is due to the use of the discrete cosine transform and scalar quantization in the compression. To restore the quantized coefficients via producing the quantization error, we propose a coefficients restoration convolutional neural network in the frequency domain (FD-CRNet). Taking advantage of residual learning, the proposed FD-CRNet efficiently exploits the related distribution of different frequency components. The squeeze-and-excitation block (SE block) is adopted to reduce the computational complexity and better restoration performance. Experimental results show the quantized coefficients are recovered near the lossless coefficients effectively, which outperforms the existed coefficients restoration methods. In addition, the performance of methods in the spatial domain is significantly improved by FD-CRNet with more authentic details and sharper edges when removing the compression artifacts.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards Quantized DCT Coefficients Restoration for Compressed Images\",\"authors\":\"Tong Ouyang, Zhenzhong Chen, Shan Liu\",\"doi\":\"10.1109/VCIP49819.2020.9301794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images and videos suffer from undesirable visual artifacts at high compression ratios, which is due to the use of the discrete cosine transform and scalar quantization in the compression. To restore the quantized coefficients via producing the quantization error, we propose a coefficients restoration convolutional neural network in the frequency domain (FD-CRNet). Taking advantage of residual learning, the proposed FD-CRNet efficiently exploits the related distribution of different frequency components. The squeeze-and-excitation block (SE block) is adopted to reduce the computational complexity and better restoration performance. Experimental results show the quantized coefficients are recovered near the lossless coefficients effectively, which outperforms the existed coefficients restoration methods. In addition, the performance of methods in the spatial domain is significantly improved by FD-CRNet with more authentic details and sharper edges when removing the compression artifacts.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在高压缩比下,图像和视频会出现不良的视觉伪影,这是由于在压缩中使用了离散余弦变换和标量量化。为了通过产生量化误差来恢复量化系数,我们提出了一种频域系数恢复卷积神经网络(FD-CRNet)。利用残差学习,FD-CRNet有效地利用了不同频率分量的相关分布。为了降低计算复杂度和提高恢复性能,采用了挤压激励块(SE块)。实验结果表明,量化后的系数能有效地恢复到无损系数附近,优于现有的系数恢复方法。此外,FD-CRNet在去除压缩伪影后,在空间域的性能得到了显著提高,细节更真实,边缘更清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Quantized DCT Coefficients Restoration for Compressed Images
Images and videos suffer from undesirable visual artifacts at high compression ratios, which is due to the use of the discrete cosine transform and scalar quantization in the compression. To restore the quantized coefficients via producing the quantization error, we propose a coefficients restoration convolutional neural network in the frequency domain (FD-CRNet). Taking advantage of residual learning, the proposed FD-CRNet efficiently exploits the related distribution of different frequency components. The squeeze-and-excitation block (SE block) is adopted to reduce the computational complexity and better restoration performance. Experimental results show the quantized coefficients are recovered near the lossless coefficients effectively, which outperforms the existed coefficients restoration methods. In addition, the performance of methods in the spatial domain is significantly improved by FD-CRNet with more authentic details and sharper edges when removing the compression artifacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信