实时注视转移熵

Islam Akef Ebeid, J. Gwizdka
{"title":"实时注视转移熵","authors":"Islam Akef Ebeid, J. Gwizdka","doi":"10.1145/3204493.3208340","DOIUrl":null,"url":null,"abstract":"In this video, we introduce a real-time algorithm that computes gaze transition entropy. This approach can be employed in detecting higher level cognitive states such as situation awareness. We first compute fixations using our real-time version of a well established velocity threshold based algorithm. We then compute the gaze transition entropy for a content independent grid of areas of interest in real-time using an update processing window approach. We test for Markov property after each update to test whether Markov assumption holds. Higher entropy corresponds to increased eye movement and more frequent monitoring of the visual field. In contrast, lower entropy corresponds to fewer eye movements and less frequent monitoring. Based on entropy levels, the system could then alert the user accordingly and plausibly offer an intervention. We developed an example application to demonstrate the use of the online calculation of gaze transition entropy in a practical scenario.","PeriodicalId":237808,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Real-time gaze transition entropy\",\"authors\":\"Islam Akef Ebeid, J. Gwizdka\",\"doi\":\"10.1145/3204493.3208340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this video, we introduce a real-time algorithm that computes gaze transition entropy. This approach can be employed in detecting higher level cognitive states such as situation awareness. We first compute fixations using our real-time version of a well established velocity threshold based algorithm. We then compute the gaze transition entropy for a content independent grid of areas of interest in real-time using an update processing window approach. We test for Markov property after each update to test whether Markov assumption holds. Higher entropy corresponds to increased eye movement and more frequent monitoring of the visual field. In contrast, lower entropy corresponds to fewer eye movements and less frequent monitoring. Based on entropy levels, the system could then alert the user accordingly and plausibly offer an intervention. We developed an example application to demonstrate the use of the online calculation of gaze transition entropy in a practical scenario.\",\"PeriodicalId\":237808,\"journal\":{\"name\":\"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3204493.3208340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204493.3208340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本视频中,我们将介绍一种计算凝视转移熵的实时算法。这种方法可以用于检测更高层次的认知状态,如情境感知。我们首先使用基于速度阈值算法的实时版本来计算固定。然后,我们使用更新处理窗口方法实时计算感兴趣区域的内容独立网格的注视转移熵。我们在每次更新后测试马尔可夫属性,以测试马尔可夫假设是否成立。更高的熵对应于更多的眼球运动和更频繁的视野监测。相反,较低的熵对应较少的眼球运动和较少的监测频率。基于熵水平,系统可以相应地提醒用户,并提供合理的干预。我们开发了一个示例应用程序来演示在实际场景中使用在线计算凝视转移熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time gaze transition entropy
In this video, we introduce a real-time algorithm that computes gaze transition entropy. This approach can be employed in detecting higher level cognitive states such as situation awareness. We first compute fixations using our real-time version of a well established velocity threshold based algorithm. We then compute the gaze transition entropy for a content independent grid of areas of interest in real-time using an update processing window approach. We test for Markov property after each update to test whether Markov assumption holds. Higher entropy corresponds to increased eye movement and more frequent monitoring of the visual field. In contrast, lower entropy corresponds to fewer eye movements and less frequent monitoring. Based on entropy levels, the system could then alert the user accordingly and plausibly offer an intervention. We developed an example application to demonstrate the use of the online calculation of gaze transition entropy in a practical scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信