稀疏布尔矩阵分解

Pauli Miettinen
{"title":"稀疏布尔矩阵分解","authors":"Pauli Miettinen","doi":"10.1109/ICDM.2010.93","DOIUrl":null,"url":null,"abstract":"Matrix factorizations are commonly used methods in data mining. When the input data is Boolean, replacing the standard matrix multiplication with Boolean matrix multiplication can yield more intuitive results. Unfortunately, finding a good Boolean decomposition is known to be computationally hard, with even many sub-problems being hard to approximate. Many real-world data sets are sparse, and it is often required that also the factor matrices are sparse. This requirement has motivated many new matrix decomposition methods and many modifications of the existing methods. This paper studies how Boolean matrix factorizations behave with sparse data: can we assume some sparsity on the factor matrices, and does the sparsity help with the computationally hard problems. The answer to these problems is shown to be positive.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Sparse Boolean Matrix Factorizations\",\"authors\":\"Pauli Miettinen\",\"doi\":\"10.1109/ICDM.2010.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix factorizations are commonly used methods in data mining. When the input data is Boolean, replacing the standard matrix multiplication with Boolean matrix multiplication can yield more intuitive results. Unfortunately, finding a good Boolean decomposition is known to be computationally hard, with even many sub-problems being hard to approximate. Many real-world data sets are sparse, and it is often required that also the factor matrices are sparse. This requirement has motivated many new matrix decomposition methods and many modifications of the existing methods. This paper studies how Boolean matrix factorizations behave with sparse data: can we assume some sparsity on the factor matrices, and does the sparsity help with the computationally hard problems. The answer to these problems is shown to be positive.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

矩阵分解是数据挖掘中常用的方法。当输入数据为布尔型时,用布尔型矩阵乘法代替标准矩阵乘法可以产生更直观的结果。不幸的是,众所周知,找到一个好的布尔分解是很难计算的,甚至许多子问题都很难近似。许多现实世界的数据集是稀疏的,并且通常要求因子矩阵也是稀疏的。这一要求激发了许多新的矩阵分解方法和对现有方法的许多修改。本文研究了布尔矩阵分解在稀疏数据下的表现:能否假设因子矩阵具有一定的稀疏性,以及这种稀疏性是否有助于解决计算困难的问题。这些问题的答案是肯定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Boolean Matrix Factorizations
Matrix factorizations are commonly used methods in data mining. When the input data is Boolean, replacing the standard matrix multiplication with Boolean matrix multiplication can yield more intuitive results. Unfortunately, finding a good Boolean decomposition is known to be computationally hard, with even many sub-problems being hard to approximate. Many real-world data sets are sparse, and it is often required that also the factor matrices are sparse. This requirement has motivated many new matrix decomposition methods and many modifications of the existing methods. This paper studies how Boolean matrix factorizations behave with sparse data: can we assume some sparsity on the factor matrices, and does the sparsity help with the computationally hard problems. The answer to these problems is shown to be positive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信