多声源心音成像中心音分量时间估计的盲源分离方法

N. Giordano, M. Knaflitz
{"title":"多声源心音成像中心音分量时间估计的盲源分离方法","authors":"N. Giordano, M. Knaflitz","doi":"10.1109/MeMeA49120.2020.9137315","DOIUrl":null,"url":null,"abstract":"Recently, phonocardiography (PCG) has gained importance as a diagnostic tool for cardiovascular diseases. In particular, the measurement of the time of occurrence of heart sounds may be of interest, in the clinical context, for the analysis of the electromechanical coupling of the heart. To date, though, there is no standardization concerning the positioning of the microphone probe over the chest, and this causes low accuracy and consistency in the measured timing values. Multi-source phonocardiography is a promising approach to face the stated issue. In this work, we present a methodology to estimate the latency of the components of the two main heart sounds towards the corresponding R-wave peak based on the Blind Source Separation (BSS) of the contributions of the left and right side of the heart. We tested our algorithm on a sample population of 12 subjects over 10-minute long recordings of three simultaneous PCG signals and one electrocardiographic (ECG) signal for reference. Results show that the approach is robust with respect to the usage of different algorithms to perform BSS (FastICA, JADE). The measured timing values are consistent with what measured by means of a single-source algorithm we previously developed. This methodology looks promising in terms of obtaining accurate measurements of the time of occurrence of heart sound components and may have an impact in the clinical context.","PeriodicalId":152478,"journal":{"name":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Method for the Estimation of the Timing of Heart Sound Components Through Blind Source Separation in Multi-Source Phonocardiography\",\"authors\":\"N. Giordano, M. Knaflitz\",\"doi\":\"10.1109/MeMeA49120.2020.9137315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, phonocardiography (PCG) has gained importance as a diagnostic tool for cardiovascular diseases. In particular, the measurement of the time of occurrence of heart sounds may be of interest, in the clinical context, for the analysis of the electromechanical coupling of the heart. To date, though, there is no standardization concerning the positioning of the microphone probe over the chest, and this causes low accuracy and consistency in the measured timing values. Multi-source phonocardiography is a promising approach to face the stated issue. In this work, we present a methodology to estimate the latency of the components of the two main heart sounds towards the corresponding R-wave peak based on the Blind Source Separation (BSS) of the contributions of the left and right side of the heart. We tested our algorithm on a sample population of 12 subjects over 10-minute long recordings of three simultaneous PCG signals and one electrocardiographic (ECG) signal for reference. Results show that the approach is robust with respect to the usage of different algorithms to perform BSS (FastICA, JADE). The measured timing values are consistent with what measured by means of a single-source algorithm we previously developed. This methodology looks promising in terms of obtaining accurate measurements of the time of occurrence of heart sound components and may have an impact in the clinical context.\",\"PeriodicalId\":152478,\"journal\":{\"name\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA49120.2020.9137315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA49120.2020.9137315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,心音图(PCG)作为心血管疾病的诊断工具越来越重要。特别是,测量心音发生的时间可能是感兴趣的,在临床背景下,分析心脏的机电耦合。然而,到目前为止,关于麦克风探头在胸部的定位没有标准化,这导致测量的定时值的准确性和一致性较低。多源心音图是解决上述问题的一种很有前途的方法。在这项工作中,我们提出了一种基于盲源分离(BSS)的方法来估计两个主要心音分量对相应r波峰值的延迟。我们在12名受试者的样本人群中测试了我们的算法,并记录了3个同时出现的PCG信号和1个心电图(ECG)信号,时长为10分钟,以供参考。结果表明,对于使用不同算法执行BSS (FastICA, JADE),该方法具有鲁棒性。测量的时序值与我们以前开发的单源算法测量的时序值一致。这种方法在获得心音成分发生时间的精确测量方面看起来很有希望,并可能在临床环境中产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method for the Estimation of the Timing of Heart Sound Components Through Blind Source Separation in Multi-Source Phonocardiography
Recently, phonocardiography (PCG) has gained importance as a diagnostic tool for cardiovascular diseases. In particular, the measurement of the time of occurrence of heart sounds may be of interest, in the clinical context, for the analysis of the electromechanical coupling of the heart. To date, though, there is no standardization concerning the positioning of the microphone probe over the chest, and this causes low accuracy and consistency in the measured timing values. Multi-source phonocardiography is a promising approach to face the stated issue. In this work, we present a methodology to estimate the latency of the components of the two main heart sounds towards the corresponding R-wave peak based on the Blind Source Separation (BSS) of the contributions of the left and right side of the heart. We tested our algorithm on a sample population of 12 subjects over 10-minute long recordings of three simultaneous PCG signals and one electrocardiographic (ECG) signal for reference. Results show that the approach is robust with respect to the usage of different algorithms to perform BSS (FastICA, JADE). The measured timing values are consistent with what measured by means of a single-source algorithm we previously developed. This methodology looks promising in terms of obtaining accurate measurements of the time of occurrence of heart sound components and may have an impact in the clinical context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信