基于NSL-KDD的XGBoost与Optuna调优异常检测

Farah Hana Kusumaputri, A. S. Arifin
{"title":"基于NSL-KDD的XGBoost与Optuna调优异常检测","authors":"Farah Hana Kusumaputri, A. S. Arifin","doi":"10.1109/ICBIR54589.2022.9786429","DOIUrl":null,"url":null,"abstract":"The enormous internet development now day across all aspects of human life has introduced various hidden risk of malicious attacks on network security that most users didn’t realize. One of the malicious attacks is intrusion of system that proliferate user’s account effortlessly. Hence, in order to avoid intrusion effect that lead to financial loss and any other loss, intrusion detection system is needed to identify a dynamic pattern of cyber attacks. In this paper, we propose an Optimized XGBoost Classifier model with the help of Optuna Hypertuning method to find the best parameter for the model. In order to find the most efficient method for training, we assign three Optuna scenarios combine with feature selection to learn the data and the machine learning model. Through learning, Optuna generated the best parameter for XGBoost Classifier. Optuna avoids time consuming and low efficiency training model. The propose XGBoost Classifier model with Optuna Hypertuning method results in a greater accuracy of detection intrusion compare to any other models.","PeriodicalId":216904,"journal":{"name":"2022 7th International Conference on Business and Industrial Research (ICBIR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anomaly Detection based on NSL-KDD using XGBoost with Optuna Tuning\",\"authors\":\"Farah Hana Kusumaputri, A. S. Arifin\",\"doi\":\"10.1109/ICBIR54589.2022.9786429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The enormous internet development now day across all aspects of human life has introduced various hidden risk of malicious attacks on network security that most users didn’t realize. One of the malicious attacks is intrusion of system that proliferate user’s account effortlessly. Hence, in order to avoid intrusion effect that lead to financial loss and any other loss, intrusion detection system is needed to identify a dynamic pattern of cyber attacks. In this paper, we propose an Optimized XGBoost Classifier model with the help of Optuna Hypertuning method to find the best parameter for the model. In order to find the most efficient method for training, we assign three Optuna scenarios combine with feature selection to learn the data and the machine learning model. Through learning, Optuna generated the best parameter for XGBoost Classifier. Optuna avoids time consuming and low efficiency training model. The propose XGBoost Classifier model with Optuna Hypertuning method results in a greater accuracy of detection intrusion compare to any other models.\",\"PeriodicalId\":216904,\"journal\":{\"name\":\"2022 7th International Conference on Business and Industrial Research (ICBIR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Business and Industrial Research (ICBIR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBIR54589.2022.9786429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Business and Industrial Research (ICBIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBIR54589.2022.9786429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如今,互联网的巨大发展遍及人类生活的方方面面,为网络安全带来了各种恶意攻击的隐患,而大多数用户并没有意识到这一点。其中一种恶意攻击是入侵系统,使用户的帐户毫不费力地扩散。因此,为了避免入侵效应导致的经济损失和其他损失,入侵检测系统需要识别网络攻击的动态模式。在本文中,我们提出了一个优化的XGBoost分类器模型,并借助Optuna Hypertuning方法来寻找模型的最佳参数。为了找到最有效的训练方法,我们分配了三个Optuna场景,结合特征选择来学习数据和机器学习模型。通过学习,Optuna生成了XGBoost分类器的最佳参数。Optuna避免了耗时、低效的培训模式。采用Optuna Hypertuning方法提出的XGBoost分类器模型与其他模型相比具有更高的检测入侵精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection based on NSL-KDD using XGBoost with Optuna Tuning
The enormous internet development now day across all aspects of human life has introduced various hidden risk of malicious attacks on network security that most users didn’t realize. One of the malicious attacks is intrusion of system that proliferate user’s account effortlessly. Hence, in order to avoid intrusion effect that lead to financial loss and any other loss, intrusion detection system is needed to identify a dynamic pattern of cyber attacks. In this paper, we propose an Optimized XGBoost Classifier model with the help of Optuna Hypertuning method to find the best parameter for the model. In order to find the most efficient method for training, we assign three Optuna scenarios combine with feature selection to learn the data and the machine learning model. Through learning, Optuna generated the best parameter for XGBoost Classifier. Optuna avoids time consuming and low efficiency training model. The propose XGBoost Classifier model with Optuna Hypertuning method results in a greater accuracy of detection intrusion compare to any other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信