用于高效查询的超大显微镜图像分布式核外预处理

B. Rutt, Vijay S. Kumar, T. Pan, T. Kurç, Ümit V. Çatalyürek, J. Saltz, Yujun Wang
{"title":"用于高效查询的超大显微镜图像分布式核外预处理","authors":"B. Rutt, Vijay S. Kumar, T. Pan, T. Kurç, Ümit V. Çatalyürek, J. Saltz, Yujun Wang","doi":"10.1109/CLUSTR.2005.347054","DOIUrl":null,"url":null,"abstract":"We present a combined task- and data-parallel approach for distributed execution of pre-processing operations to support efficient evaluation of polygonal aggregation queries on digitized microscopy images. Our approach targets out-of-core, pipelined processing of very large images on active storage clusters. Our experimental results show that the proposed approach is scalable both in terms of number of processors and the size of images","PeriodicalId":255312,"journal":{"name":"2005 IEEE International Conference on Cluster Computing","volume":"87 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Distributed Out-of-Core Preprocessing of Very Large Microscopy Images for Efficient Querying\",\"authors\":\"B. Rutt, Vijay S. Kumar, T. Pan, T. Kurç, Ümit V. Çatalyürek, J. Saltz, Yujun Wang\",\"doi\":\"10.1109/CLUSTR.2005.347054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a combined task- and data-parallel approach for distributed execution of pre-processing operations to support efficient evaluation of polygonal aggregation queries on digitized microscopy images. Our approach targets out-of-core, pipelined processing of very large images on active storage clusters. Our experimental results show that the proposed approach is scalable both in terms of number of processors and the size of images\",\"PeriodicalId\":255312,\"journal\":{\"name\":\"2005 IEEE International Conference on Cluster Computing\",\"volume\":\"87 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2005.347054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2005.347054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一种任务并行和数据并行的方法,用于分布式执行预处理操作,以支持对数字化显微镜图像的多边形聚合查询的有效评估。我们的方法目标是在活动存储集群上对非常大的图像进行核外的流水线处理。实验结果表明,该方法在处理器数量和图像大小方面都具有可扩展性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Out-of-Core Preprocessing of Very Large Microscopy Images for Efficient Querying
We present a combined task- and data-parallel approach for distributed execution of pre-processing operations to support efficient evaluation of polygonal aggregation queries on digitized microscopy images. Our approach targets out-of-core, pipelined processing of very large images on active storage clusters. Our experimental results show that the proposed approach is scalable both in terms of number of processors and the size of images
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信