比例平均分解:高斯系和伯努利系之间的桥梁

Samet Oymak, B. Hassibi
{"title":"比例平均分解:高斯系和伯努利系之间的桥梁","authors":"Samet Oymak, B. Hassibi","doi":"10.1109/ICASSP.2015.7178586","DOIUrl":null,"url":null,"abstract":"We consider ill-posed linear inverse problems involving the estimation of structured sparse signals. When the sensing matrix has i.i.d. standard normal entries, there is a full-fledged theory on the sample complexity and robustness properties. In this work, we propose a way of making use of this theory to get good bounds for the i.i.d. Bernoulli ensemble. We first provide a deterministic relation between the two ensembles that relates the restricted singular values. Then, we show how one can get non-asymptotic results with small constants for the Bernoulli ensemble. While our discussion focuses on Bernoulli measurements, the main idea can be extended to any discrete distribution with little difficulty.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The proportional mean decomposition: A bridge between the Gaussian and bernoulli ensembles\",\"authors\":\"Samet Oymak, B. Hassibi\",\"doi\":\"10.1109/ICASSP.2015.7178586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider ill-posed linear inverse problems involving the estimation of structured sparse signals. When the sensing matrix has i.i.d. standard normal entries, there is a full-fledged theory on the sample complexity and robustness properties. In this work, we propose a way of making use of this theory to get good bounds for the i.i.d. Bernoulli ensemble. We first provide a deterministic relation between the two ensembles that relates the restricted singular values. Then, we show how one can get non-asymptotic results with small constants for the Bernoulli ensemble. While our discussion focuses on Bernoulli measurements, the main idea can be extended to any discrete distribution with little difficulty.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了涉及结构化稀疏信号估计的不适定线性逆问题。当传感矩阵有i个标准法向项时,对于样本复杂度和鲁棒性已经有了较为完善的理论。在这项工作中,我们提出了一种利用这一理论来获得良好的伯努利系综边界的方法。我们首先给出了两个系综之间的确定性关系,该关系与受限奇异值有关。然后,我们展示了如何得到伯努利系综的小常数的非渐近结果。虽然我们的讨论集中在伯努利测量上,但其主要思想可以很容易地扩展到任何离散分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The proportional mean decomposition: A bridge between the Gaussian and bernoulli ensembles
We consider ill-posed linear inverse problems involving the estimation of structured sparse signals. When the sensing matrix has i.i.d. standard normal entries, there is a full-fledged theory on the sample complexity and robustness properties. In this work, we propose a way of making use of this theory to get good bounds for the i.i.d. Bernoulli ensemble. We first provide a deterministic relation between the two ensembles that relates the restricted singular values. Then, we show how one can get non-asymptotic results with small constants for the Bernoulli ensemble. While our discussion focuses on Bernoulli measurements, the main idea can be extended to any discrete distribution with little difficulty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信