{"title":"比例平均分解:高斯系和伯努利系之间的桥梁","authors":"Samet Oymak, B. Hassibi","doi":"10.1109/ICASSP.2015.7178586","DOIUrl":null,"url":null,"abstract":"We consider ill-posed linear inverse problems involving the estimation of structured sparse signals. When the sensing matrix has i.i.d. standard normal entries, there is a full-fledged theory on the sample complexity and robustness properties. In this work, we propose a way of making use of this theory to get good bounds for the i.i.d. Bernoulli ensemble. We first provide a deterministic relation between the two ensembles that relates the restricted singular values. Then, we show how one can get non-asymptotic results with small constants for the Bernoulli ensemble. While our discussion focuses on Bernoulli measurements, the main idea can be extended to any discrete distribution with little difficulty.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The proportional mean decomposition: A bridge between the Gaussian and bernoulli ensembles\",\"authors\":\"Samet Oymak, B. Hassibi\",\"doi\":\"10.1109/ICASSP.2015.7178586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider ill-posed linear inverse problems involving the estimation of structured sparse signals. When the sensing matrix has i.i.d. standard normal entries, there is a full-fledged theory on the sample complexity and robustness properties. In this work, we propose a way of making use of this theory to get good bounds for the i.i.d. Bernoulli ensemble. We first provide a deterministic relation between the two ensembles that relates the restricted singular values. Then, we show how one can get non-asymptotic results with small constants for the Bernoulli ensemble. While our discussion focuses on Bernoulli measurements, the main idea can be extended to any discrete distribution with little difficulty.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The proportional mean decomposition: A bridge between the Gaussian and bernoulli ensembles
We consider ill-posed linear inverse problems involving the estimation of structured sparse signals. When the sensing matrix has i.i.d. standard normal entries, there is a full-fledged theory on the sample complexity and robustness properties. In this work, we propose a way of making use of this theory to get good bounds for the i.i.d. Bernoulli ensemble. We first provide a deterministic relation between the two ensembles that relates the restricted singular values. Then, we show how one can get non-asymptotic results with small constants for the Bernoulli ensemble. While our discussion focuses on Bernoulli measurements, the main idea can be extended to any discrete distribution with little difficulty.