{"title":"高功率激光二极管:功率、效率和亮度的改进(会议报告)","authors":"G. Tränkle","doi":"10.1117/12.2517037","DOIUrl":null,"url":null,"abstract":"GaAs-based high-power diode lasers are the world’s most efficient light sources and generate the optical energy for the largest and fastest growing laser market: material processing. The performance of these key components is improving dramatically, driven by advances in material quality, process technology and design capability. FBH’s studies to improve the understanding of the physics and material properties that limit performance are an essential part of this development. An overview will be presented, detailing how power, efficiency and beam quality have been improved over the past 20 years, and showing the path to further performance scaling.","PeriodicalId":136614,"journal":{"name":"High-Power Diode Laser Technology XVII","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High Power Laser Diodes: Improvements in Power, Efficiency, and Brilliance (Conference Presentation)\",\"authors\":\"G. Tränkle\",\"doi\":\"10.1117/12.2517037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaAs-based high-power diode lasers are the world’s most efficient light sources and generate the optical energy for the largest and fastest growing laser market: material processing. The performance of these key components is improving dramatically, driven by advances in material quality, process technology and design capability. FBH’s studies to improve the understanding of the physics and material properties that limit performance are an essential part of this development. An overview will be presented, detailing how power, efficiency and beam quality have been improved over the past 20 years, and showing the path to further performance scaling.\",\"PeriodicalId\":136614,\"journal\":{\"name\":\"High-Power Diode Laser Technology XVII\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Power Diode Laser Technology XVII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2517037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Power Diode Laser Technology XVII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2517037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Power Laser Diodes: Improvements in Power, Efficiency, and Brilliance (Conference Presentation)
GaAs-based high-power diode lasers are the world’s most efficient light sources and generate the optical energy for the largest and fastest growing laser market: material processing. The performance of these key components is improving dramatically, driven by advances in material quality, process technology and design capability. FBH’s studies to improve the understanding of the physics and material properties that limit performance are an essential part of this development. An overview will be presented, detailing how power, efficiency and beam quality have been improved over the past 20 years, and showing the path to further performance scaling.