交换自回归模型中基于消息传递的推理

Albert Podusenko, B. V. Erp, Dmitry V. Bagaev, Ismail Senöz, B. Vries
{"title":"交换自回归模型中基于消息传递的推理","authors":"Albert Podusenko, B. V. Erp, Dmitry V. Bagaev, Ismail Senöz, B. Vries","doi":"10.23919/eusipco55093.2022.9909828","DOIUrl":null,"url":null,"abstract":"The switching autoregressive model is a flexible model for signals generated by non-stationary processes. Unfortunately, evaluation of the exact posterior distributions of the latent variables for a switching autoregressive model is analytically intractable, and this limits the applicability of switching autoregressive models in practical signal processing tasks. In this paper we present a message passing-based approach for computing approximate posterior distributions in the switching autoregressive model. Our solution tracks approximate posterior distributions in a modular way and easily extends to more complicated model variations. The proposed message passing algorithm is verified and validated on synthetic and acoustic data sets respectively.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Message Passing-based Inference in Switching Autoregressive Models\",\"authors\":\"Albert Podusenko, B. V. Erp, Dmitry V. Bagaev, Ismail Senöz, B. Vries\",\"doi\":\"10.23919/eusipco55093.2022.9909828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The switching autoregressive model is a flexible model for signals generated by non-stationary processes. Unfortunately, evaluation of the exact posterior distributions of the latent variables for a switching autoregressive model is analytically intractable, and this limits the applicability of switching autoregressive models in practical signal processing tasks. In this paper we present a message passing-based approach for computing approximate posterior distributions in the switching autoregressive model. Our solution tracks approximate posterior distributions in a modular way and easily extends to more complicated model variations. The proposed message passing algorithm is verified and validated on synthetic and acoustic data sets respectively.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

开关自回归模型对于非平稳过程产生的信号是一种灵活的模型。不幸的是,对切换自回归模型的潜在变量的精确后验分布的评估在分析上是难以解决的,这限制了切换自回归模型在实际信号处理任务中的适用性。在本文中,我们提出了一种基于消息传递的方法来计算开关自回归模型中的近似后验分布。我们的解决方案以模块化的方式跟踪近似后验分布,并且很容易扩展到更复杂的模型变化。在合成数据集和声学数据集上分别对所提出的消息传递算法进行了验证和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Message Passing-based Inference in Switching Autoregressive Models
The switching autoregressive model is a flexible model for signals generated by non-stationary processes. Unfortunately, evaluation of the exact posterior distributions of the latent variables for a switching autoregressive model is analytically intractable, and this limits the applicability of switching autoregressive models in practical signal processing tasks. In this paper we present a message passing-based approach for computing approximate posterior distributions in the switching autoregressive model. Our solution tracks approximate posterior distributions in a modular way and easily extends to more complicated model variations. The proposed message passing algorithm is verified and validated on synthetic and acoustic data sets respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信