基于震级图像的MRI超分辨率数据一致性深度学习方法

Ziyan Lin, Zihao Chen
{"title":"基于震级图像的MRI超分辨率数据一致性深度学习方法","authors":"Ziyan Lin, Zihao Chen","doi":"10.1109/CBMS55023.2022.00060","DOIUrl":null,"url":null,"abstract":"Magnetic Resonance Imaging (MRI) is important in clinic to produce high resolution images for diagnosis, but its acquisition time is long for high resolution images. Deep learning based MRI super resolution methods can reduce scan time without complicated sequence programming, but may create additional artifacts due to the discrepancy between training data and testing data. Data consistency layer can improve the deep learning results but needs raw k-space data. In this work, we propose a magnitude-image based data consistency deep learning MRI super resolution method to improve super resolution images' quality without raw k-space data. Our experiments show that the proposed method can improve NRMSE and SSIM of super resolution images compared to the same Convolutional Neural Network (CNN) block without data consistency module.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magnitude-image based data-consistent deep learning method for MRI super resolution\",\"authors\":\"Ziyan Lin, Zihao Chen\",\"doi\":\"10.1109/CBMS55023.2022.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic Resonance Imaging (MRI) is important in clinic to produce high resolution images for diagnosis, but its acquisition time is long for high resolution images. Deep learning based MRI super resolution methods can reduce scan time without complicated sequence programming, but may create additional artifacts due to the discrepancy between training data and testing data. Data consistency layer can improve the deep learning results but needs raw k-space data. In this work, we propose a magnitude-image based data consistency deep learning MRI super resolution method to improve super resolution images' quality without raw k-space data. Our experiments show that the proposed method can improve NRMSE and SSIM of super resolution images compared to the same Convolutional Neural Network (CNN) block without data consistency module.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

磁共振成像(MRI)对临床诊断产生高分辨率图像具有重要意义,但高分辨率图像的采集时间较长。基于深度学习的MRI超分辨率方法可以减少扫描时间,无需复杂的序列编程,但由于训练数据和测试数据之间的差异,可能会产生额外的伪影。数据一致性层可以改善深度学习结果,但需要原始k空间数据。在这项工作中,我们提出了一种基于大小图像的数据一致性深度学习MRI超分辨率方法,以提高超分辨率图像的质量,而不需要原始k空间数据。实验表明,与不使用数据一致性模块的相同卷积神经网络(CNN)块相比,该方法可以提高超分辨率图像的NRMSE和SSIM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnitude-image based data-consistent deep learning method for MRI super resolution
Magnetic Resonance Imaging (MRI) is important in clinic to produce high resolution images for diagnosis, but its acquisition time is long for high resolution images. Deep learning based MRI super resolution methods can reduce scan time without complicated sequence programming, but may create additional artifacts due to the discrepancy between training data and testing data. Data consistency layer can improve the deep learning results but needs raw k-space data. In this work, we propose a magnitude-image based data consistency deep learning MRI super resolution method to improve super resolution images' quality without raw k-space data. Our experiments show that the proposed method can improve NRMSE and SSIM of super resolution images compared to the same Convolutional Neural Network (CNN) block without data consistency module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信