{"title":"基于OpenCL的可压缩气体动力学混合规划模型","authors":"B. Bergen, Marcus G. Daniels, Paul M. Weber","doi":"10.1109/ICPPW.2010.60","DOIUrl":null,"url":null,"abstract":"The current trend towards multi-core/manycore and accelerated architectures presents challenges, both in portability, and also in the choices that developers must make on how to use the resources that these architectures provide. This paper explores some of the possibilities that are enabled by the Open Computing Language (OpenCL), and proposes a programming model that will allow developers and scientists to more fully subscribe hybrid compute nodes, while, at the same time, reducing the impact of system failure.","PeriodicalId":415472,"journal":{"name":"2010 39th International Conference on Parallel Processing Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Hybrid Programming Model for Compressible Gas Dynamics Using OpenCL\",\"authors\":\"B. Bergen, Marcus G. Daniels, Paul M. Weber\",\"doi\":\"10.1109/ICPPW.2010.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current trend towards multi-core/manycore and accelerated architectures presents challenges, both in portability, and also in the choices that developers must make on how to use the resources that these architectures provide. This paper explores some of the possibilities that are enabled by the Open Computing Language (OpenCL), and proposes a programming model that will allow developers and scientists to more fully subscribe hybrid compute nodes, while, at the same time, reducing the impact of system failure.\",\"PeriodicalId\":415472,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPPW.2010.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPPW.2010.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Programming Model for Compressible Gas Dynamics Using OpenCL
The current trend towards multi-core/manycore and accelerated architectures presents challenges, both in portability, and also in the choices that developers must make on how to use the resources that these architectures provide. This paper explores some of the possibilities that are enabled by the Open Computing Language (OpenCL), and proposes a programming model that will allow developers and scientists to more fully subscribe hybrid compute nodes, while, at the same time, reducing the impact of system failure.