考虑突然不平衡的挤压膜阻尼耦合双转子动力学分析

Ying Cui, Yuxi Huang, Guogang Yang, Yongliang Wang, Han Zhang
{"title":"考虑突然不平衡的挤压膜阻尼耦合双转子动力学分析","authors":"Ying Cui, Yuxi Huang, Guogang Yang, Yongliang Wang, Han Zhang","doi":"10.1115/gt2021-58824","DOIUrl":null,"url":null,"abstract":"\n A nonlinear multi-degree-of-freedom dynamic model of a coupled dual-rotor system with an intershaft bearing and uncentralized squeeze film damper is established by using finite element method. Based on the model, the critical speed characteristic diagram and vibration modes of the system were calculated. The steady-state unbalance response is obtained by using Newmark-β algorithm. The numerical results show the effect of SFD position in the dual-rotor system on response amplitude. It is found that with the decrease of radial clearance and the increase of length-diameter ratio and lubricating oil viscosity, the damping effect of SFD is enhanced and the bistable state phenomenon can be suppressed. The transient response of the system in case of sudden unbalance occurring at the fan was simulated by applying a step function. It is demonstrated that the SFD can effectively reduce the duration and maximum amplitude of the transient process, but at certain speeds, the SFD will increase the amplitude after the system returns to steady state, the damping effect on the transient response is also enhanced with the increase of length-diameter and the decrease of radial clearance, and with the increase of the sudden unbalance value, the response is more likely to stabilized at the high amplitude state of the bistable state.","PeriodicalId":143309,"journal":{"name":"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","volume":"600 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Analysis of a Coupled Dual-Rotor With Squeeze Film Damper Considering Sudden Unbalance\",\"authors\":\"Ying Cui, Yuxi Huang, Guogang Yang, Yongliang Wang, Han Zhang\",\"doi\":\"10.1115/gt2021-58824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A nonlinear multi-degree-of-freedom dynamic model of a coupled dual-rotor system with an intershaft bearing and uncentralized squeeze film damper is established by using finite element method. Based on the model, the critical speed characteristic diagram and vibration modes of the system were calculated. The steady-state unbalance response is obtained by using Newmark-β algorithm. The numerical results show the effect of SFD position in the dual-rotor system on response amplitude. It is found that with the decrease of radial clearance and the increase of length-diameter ratio and lubricating oil viscosity, the damping effect of SFD is enhanced and the bistable state phenomenon can be suppressed. The transient response of the system in case of sudden unbalance occurring at the fan was simulated by applying a step function. It is demonstrated that the SFD can effectively reduce the duration and maximum amplitude of the transient process, but at certain speeds, the SFD will increase the amplitude after the system returns to steady state, the damping effect on the transient response is also enhanced with the increase of length-diameter and the decrease of radial clearance, and with the increase of the sudden unbalance value, the response is more likely to stabilized at the high amplitude state of the bistable state.\",\"PeriodicalId\":143309,\"journal\":{\"name\":\"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration\",\"volume\":\"600 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-58824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-58824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用有限元法建立了具有轴间轴承和非集中挤压膜阻尼器的耦合双转子系统的非线性多自由度动力学模型。在此基础上,计算了系统的临界转速特性图和振动模态。采用Newmark-β算法求解稳态不平衡响应。数值计算结果显示了双转子系统中SFD位置对响应幅值的影响。研究发现,随着径向间隙的减小、长径比和润滑油粘度的增大,SFD的阻尼效果增强,双稳态现象得到抑制。采用阶跃函数模拟了风机发生突然不平衡时系统的瞬态响应。证明了陕西林业局可以有效降低持续时间和最大振幅的瞬态过程,但在一定的速度,系统返回后,陕西林业局将增加振幅稳定状态,阻尼影响瞬态响应也加强与长径的增加和减少的径向间隙,突然不平衡值的增加,响应更有可能稳定在高振幅的双稳状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Analysis of a Coupled Dual-Rotor With Squeeze Film Damper Considering Sudden Unbalance
A nonlinear multi-degree-of-freedom dynamic model of a coupled dual-rotor system with an intershaft bearing and uncentralized squeeze film damper is established by using finite element method. Based on the model, the critical speed characteristic diagram and vibration modes of the system were calculated. The steady-state unbalance response is obtained by using Newmark-β algorithm. The numerical results show the effect of SFD position in the dual-rotor system on response amplitude. It is found that with the decrease of radial clearance and the increase of length-diameter ratio and lubricating oil viscosity, the damping effect of SFD is enhanced and the bistable state phenomenon can be suppressed. The transient response of the system in case of sudden unbalance occurring at the fan was simulated by applying a step function. It is demonstrated that the SFD can effectively reduce the duration and maximum amplitude of the transient process, but at certain speeds, the SFD will increase the amplitude after the system returns to steady state, the damping effect on the transient response is also enhanced with the increase of length-diameter and the decrease of radial clearance, and with the increase of the sudden unbalance value, the response is more likely to stabilized at the high amplitude state of the bistable state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信