{"title":"基于蒙特卡罗粒子模拟的BEOL氧化物时间相关介电击穿物理模型","authors":"Seongwook Choi, Y. Park","doi":"10.1109/SISPAD.2014.6931587","DOIUrl":null,"url":null,"abstract":"A simulation method for the TDDB of the BEOL oxide is investigated based on the 3D particle Monte Carlo simulation model which can evaluate the random motion of Cu ions in the oxide. While the conventional models do not consider the percolation theory of the TDDB phenomenon, the new model is based on the percolation model so that more rigorous physics can be considered. Also, the new method enables the statistical analysis of TDDB for the BEOL oxide. From the simulation study, it turns out that the assumptions of the previous models result in inaccurate characteristics and mechanisms. We expect that the simulation framework proposed in this paper could not only lead us to deeper physical insights but also could be readily applied to predict the reliability under the realistic conditions of the interconnect such as the 3D damascene structures or Cu-liner systems and so on.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Physical modeling of time dependent dielectric breakdown (TDDB) of BEOL oxide using Monte Carlo particle simulation\",\"authors\":\"Seongwook Choi, Y. Park\",\"doi\":\"10.1109/SISPAD.2014.6931587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simulation method for the TDDB of the BEOL oxide is investigated based on the 3D particle Monte Carlo simulation model which can evaluate the random motion of Cu ions in the oxide. While the conventional models do not consider the percolation theory of the TDDB phenomenon, the new model is based on the percolation model so that more rigorous physics can be considered. Also, the new method enables the statistical analysis of TDDB for the BEOL oxide. From the simulation study, it turns out that the assumptions of the previous models result in inaccurate characteristics and mechanisms. We expect that the simulation framework proposed in this paper could not only lead us to deeper physical insights but also could be readily applied to predict the reliability under the realistic conditions of the interconnect such as the 3D damascene structures or Cu-liner systems and so on.\",\"PeriodicalId\":101858,\"journal\":{\"name\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2014.6931587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical modeling of time dependent dielectric breakdown (TDDB) of BEOL oxide using Monte Carlo particle simulation
A simulation method for the TDDB of the BEOL oxide is investigated based on the 3D particle Monte Carlo simulation model which can evaluate the random motion of Cu ions in the oxide. While the conventional models do not consider the percolation theory of the TDDB phenomenon, the new model is based on the percolation model so that more rigorous physics can be considered. Also, the new method enables the statistical analysis of TDDB for the BEOL oxide. From the simulation study, it turns out that the assumptions of the previous models result in inaccurate characteristics and mechanisms. We expect that the simulation framework proposed in this paper could not only lead us to deeper physical insights but also could be readily applied to predict the reliability under the realistic conditions of the interconnect such as the 3D damascene structures or Cu-liner systems and so on.