{"title":"用感应热成像法检查飞机发动机部件","authors":"M. Genest, Gang Li","doi":"10.1109/CCECE.2018.8447832","DOIUrl":null,"url":null,"abstract":"Induction thermography technique is assessed experimentally on aircraft engine parts with fatigue cracks using a three-loop coil. Results show that induction thermography can detect cracks in engine parts, with inspection time of less than 1 s. Coating surface to increase the part emissivity improved the signal to noise ratio but was not necessary for the crack detection. Despite high local heat gradient resulting from the parts' edges, cracks were still detectable. This edge effect introduced more challenges to detect short cracks. Relatively, longer cracks were easier to detect. The optimal observation time, in the experiments, was between 0.1 s and 0.25 s. Inspection of the engine disc with complex geometry was feasible using the induction thermography technique. However, in this case only some of the cracks were detected. Similar findings were also obtained from the 3D multiphysics finite element modelling.","PeriodicalId":181463,"journal":{"name":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inspection of Aircraft Engine Components Using Induction Thermography\",\"authors\":\"M. Genest, Gang Li\",\"doi\":\"10.1109/CCECE.2018.8447832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Induction thermography technique is assessed experimentally on aircraft engine parts with fatigue cracks using a three-loop coil. Results show that induction thermography can detect cracks in engine parts, with inspection time of less than 1 s. Coating surface to increase the part emissivity improved the signal to noise ratio but was not necessary for the crack detection. Despite high local heat gradient resulting from the parts' edges, cracks were still detectable. This edge effect introduced more challenges to detect short cracks. Relatively, longer cracks were easier to detect. The optimal observation time, in the experiments, was between 0.1 s and 0.25 s. Inspection of the engine disc with complex geometry was feasible using the induction thermography technique. However, in this case only some of the cracks were detected. Similar findings were also obtained from the 3D multiphysics finite element modelling.\",\"PeriodicalId\":181463,\"journal\":{\"name\":\"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2018.8447832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2018.8447832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inspection of Aircraft Engine Components Using Induction Thermography
Induction thermography technique is assessed experimentally on aircraft engine parts with fatigue cracks using a three-loop coil. Results show that induction thermography can detect cracks in engine parts, with inspection time of less than 1 s. Coating surface to increase the part emissivity improved the signal to noise ratio but was not necessary for the crack detection. Despite high local heat gradient resulting from the parts' edges, cracks were still detectable. This edge effect introduced more challenges to detect short cracks. Relatively, longer cracks were easier to detect. The optimal observation time, in the experiments, was between 0.1 s and 0.25 s. Inspection of the engine disc with complex geometry was feasible using the induction thermography technique. However, in this case only some of the cracks were detected. Similar findings were also obtained from the 3D multiphysics finite element modelling.