求解Hilbert空间凸可行性问题的无限制Douglas-Rachford算法

Kay Barshad, A. Gibali, S. Reich
{"title":"求解Hilbert空间凸可行性问题的无限制Douglas-Rachford算法","authors":"Kay Barshad, A. Gibali, S. Reich","doi":"10.1080/10556788.2022.2157003","DOIUrl":null,"url":null,"abstract":"In this work we focus on the convex feasibility problem (CFP) in Hilbert space. A specific method in this area that has gained a lot of interest in recent years is the Douglas-Rachford (DR) algorithm. This algorithm was originally introduced in 1956 for solving stationary and non-stationary heat equations. Then in 1979, Lions and Mercier adjusted and extended the algorithm with the aim of solving CFPs and even more general problems, such as finding zeros of the sum of two maximally monotone operators. Many developments which implement various concepts concerning this algorithm have occurred during the last decade. We introduce an unrestricted DR algorithm, which provides a general framework for such concepts. Using unrestricted products of a finite number of strongly nonexpansive operators, we apply this framework to provide new iterative methods, where, inter alia, such operators may be interlaced between the operators used in the scheme of our unrestricted DR algorithm.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unrestricted Douglas-Rachford algorithms for solving convex feasibility problems in Hilbert space\",\"authors\":\"Kay Barshad, A. Gibali, S. Reich\",\"doi\":\"10.1080/10556788.2022.2157003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we focus on the convex feasibility problem (CFP) in Hilbert space. A specific method in this area that has gained a lot of interest in recent years is the Douglas-Rachford (DR) algorithm. This algorithm was originally introduced in 1956 for solving stationary and non-stationary heat equations. Then in 1979, Lions and Mercier adjusted and extended the algorithm with the aim of solving CFPs and even more general problems, such as finding zeros of the sum of two maximally monotone operators. Many developments which implement various concepts concerning this algorithm have occurred during the last decade. We introduce an unrestricted DR algorithm, which provides a general framework for such concepts. Using unrestricted products of a finite number of strongly nonexpansive operators, we apply this framework to provide new iterative methods, where, inter alia, such operators may be interlaced between the operators used in the scheme of our unrestricted DR algorithm.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2157003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2157003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究Hilbert空间中的凸可行性问题。近年来在这一领域获得了很多关注的一种具体方法是Douglas-Rachford (DR)算法。该算法最初是在1956年提出的,用于求解平稳和非平稳热方程。1979年,Lions和Mercier对该算法进行了调整和扩展,目的是解决cfp和更一般的问题,例如寻找两个最大单调算子和的零。在过去的十年中,已经出现了许多实现有关该算法的各种概念的发展。我们引入了一种不受限制的DR算法,它为这些概念提供了一个通用的框架。使用有限数量的强非膨胀算子的无限制积,我们应用这个框架来提供新的迭代方法,其中,除其他外,这些算子可以在我们的无限制DR算法方案中使用的算子之间交错。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unrestricted Douglas-Rachford algorithms for solving convex feasibility problems in Hilbert space
In this work we focus on the convex feasibility problem (CFP) in Hilbert space. A specific method in this area that has gained a lot of interest in recent years is the Douglas-Rachford (DR) algorithm. This algorithm was originally introduced in 1956 for solving stationary and non-stationary heat equations. Then in 1979, Lions and Mercier adjusted and extended the algorithm with the aim of solving CFPs and even more general problems, such as finding zeros of the sum of two maximally monotone operators. Many developments which implement various concepts concerning this algorithm have occurred during the last decade. We introduce an unrestricted DR algorithm, which provides a general framework for such concepts. Using unrestricted products of a finite number of strongly nonexpansive operators, we apply this framework to provide new iterative methods, where, inter alia, such operators may be interlaced between the operators used in the scheme of our unrestricted DR algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信