{"title":"Easigami:通过物理折叠进行虚拟创造","authors":"Yingdan Huang, M. Eisenberg","doi":"10.1145/2148131.2148143","DOIUrl":null,"url":null,"abstract":"With the advent of affordable three-dimensional printing and fabrication devices, the design of 3D objects has become an increasingly central activity in creative computational work. A recurring issue in this sort of design, however, is overcoming the \"two-dimensional bottleneck\" of the standard computer screen and associated conventional input devices: that is, it is difficult to create and visualize tangible objects using such hardware combination and (generally complex) modeling software. As a consequence, there is a growing need for a variety of innovative 3D input tools and techniques that allow users to create, customize, and visualize spatial objects and information \"by hand\". This paper describes a working example of such a tool: a tangible 3D sketching tool called Easigami, which permits users to assemble a wide variety of polyhedral objects by connecting and folding polygonal pieces. The physical arrangement of Easigami pieces is read into a computer and displayed interactively, in real time. Thus Easigami, by its design, blends the natural physical ability of folding paper-like materials with the power of computational representation. This paper describes the design of Easigami, presents a scenario of its use, and outlines ongoing and planned future work of the system.","PeriodicalId":440364,"journal":{"name":"Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Easigami: virtual creation by physical folding\",\"authors\":\"Yingdan Huang, M. Eisenberg\",\"doi\":\"10.1145/2148131.2148143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of affordable three-dimensional printing and fabrication devices, the design of 3D objects has become an increasingly central activity in creative computational work. A recurring issue in this sort of design, however, is overcoming the \\\"two-dimensional bottleneck\\\" of the standard computer screen and associated conventional input devices: that is, it is difficult to create and visualize tangible objects using such hardware combination and (generally complex) modeling software. As a consequence, there is a growing need for a variety of innovative 3D input tools and techniques that allow users to create, customize, and visualize spatial objects and information \\\"by hand\\\". This paper describes a working example of such a tool: a tangible 3D sketching tool called Easigami, which permits users to assemble a wide variety of polyhedral objects by connecting and folding polygonal pieces. The physical arrangement of Easigami pieces is read into a computer and displayed interactively, in real time. Thus Easigami, by its design, blends the natural physical ability of folding paper-like materials with the power of computational representation. This paper describes the design of Easigami, presents a scenario of its use, and outlines ongoing and planned future work of the system.\",\"PeriodicalId\":440364,\"journal\":{\"name\":\"Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2148131.2148143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2148131.2148143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
With the advent of affordable three-dimensional printing and fabrication devices, the design of 3D objects has become an increasingly central activity in creative computational work. A recurring issue in this sort of design, however, is overcoming the "two-dimensional bottleneck" of the standard computer screen and associated conventional input devices: that is, it is difficult to create and visualize tangible objects using such hardware combination and (generally complex) modeling software. As a consequence, there is a growing need for a variety of innovative 3D input tools and techniques that allow users to create, customize, and visualize spatial objects and information "by hand". This paper describes a working example of such a tool: a tangible 3D sketching tool called Easigami, which permits users to assemble a wide variety of polyhedral objects by connecting and folding polygonal pieces. The physical arrangement of Easigami pieces is read into a computer and displayed interactively, in real time. Thus Easigami, by its design, blends the natural physical ability of folding paper-like materials with the power of computational representation. This paper describes the design of Easigami, presents a scenario of its use, and outlines ongoing and planned future work of the system.