{"title":"计算机视觉应用中基于规则推理的基于计算智能的机器学习方法","authors":"T. Dhivyaprabha, P. Subashini, M. Krishnaveni","doi":"10.1109/SSCI.2016.7850050","DOIUrl":null,"url":null,"abstract":"In robot control, rule discovery for understanding of data is of critical importance. Basically, understanding of data depends upon logical rules, similarity evaluation and graphical methods. The expert system collects training examples separately by exploring an anonymous environment by using machine learning techniques. In dynamic environments, future actions are determined by sequences of perceptions thus encoded as rule base. This paper is focused on demonstrating the extraction and application of logical rules for image understanding, using newly developed Synergistic Fibroblast Optimization (SFO) algorithm with well-known existing artificial learning methods. The SFO algorithm is tested in two modes: Michigan and Pittsburgh approach. Optimal rule discovery is evaluated by describing continuous data and verifying accuracy and error level at optimization phase. In this work, Monk's problem is solved by discovering optimal rules that enhance the generalization and comprehensibility of a robot classification system in classifying the objects from extracted attributes to effectively categorize its domain.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Computational intelligence based machine learning methods for rule-based reasoning in computer vision applications\",\"authors\":\"T. Dhivyaprabha, P. Subashini, M. Krishnaveni\",\"doi\":\"10.1109/SSCI.2016.7850050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In robot control, rule discovery for understanding of data is of critical importance. Basically, understanding of data depends upon logical rules, similarity evaluation and graphical methods. The expert system collects training examples separately by exploring an anonymous environment by using machine learning techniques. In dynamic environments, future actions are determined by sequences of perceptions thus encoded as rule base. This paper is focused on demonstrating the extraction and application of logical rules for image understanding, using newly developed Synergistic Fibroblast Optimization (SFO) algorithm with well-known existing artificial learning methods. The SFO algorithm is tested in two modes: Michigan and Pittsburgh approach. Optimal rule discovery is evaluated by describing continuous data and verifying accuracy and error level at optimization phase. In this work, Monk's problem is solved by discovering optimal rules that enhance the generalization and comprehensibility of a robot classification system in classifying the objects from extracted attributes to effectively categorize its domain.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7850050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7850050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational intelligence based machine learning methods for rule-based reasoning in computer vision applications
In robot control, rule discovery for understanding of data is of critical importance. Basically, understanding of data depends upon logical rules, similarity evaluation and graphical methods. The expert system collects training examples separately by exploring an anonymous environment by using machine learning techniques. In dynamic environments, future actions are determined by sequences of perceptions thus encoded as rule base. This paper is focused on demonstrating the extraction and application of logical rules for image understanding, using newly developed Synergistic Fibroblast Optimization (SFO) algorithm with well-known existing artificial learning methods. The SFO algorithm is tested in two modes: Michigan and Pittsburgh approach. Optimal rule discovery is evaluated by describing continuous data and verifying accuracy and error level at optimization phase. In this work, Monk's problem is solved by discovering optimal rules that enhance the generalization and comprehensibility of a robot classification system in classifying the objects from extracted attributes to effectively categorize its domain.