转子-轴承系统设计范围内转子动力学性能的有效评价

Zhusan Luo, Carl L. Schwarz
{"title":"转子-轴承系统设计范围内转子动力学性能的有效评价","authors":"Zhusan Luo, Carl L. Schwarz","doi":"10.1115/gt2021-60301","DOIUrl":null,"url":null,"abstract":"\n This paper presents a study on the effective evaluation of rotordynamic performance for multiple analysis cases within rotor-bearing system design bounds. The variations in rotordynamic design variables and operating conditions are usually considered in a rotordynamic analysis. This can provide useful information about the current design, potential for modification, and the capability of off-design operation. Typical design bounds of a tilting pad journal bearing are discussed to show the complexity of multiple design cases and a demand for a method to postprocess the analytical results.\n Rotordynamic performance is conventionally assessed by examining undamped critical speed maps, damped modes, stability, and unbalance responses. Evaluating rotordynamic performance for multiple cases is a tedious task for both rotordynamicists and reviewers. A new approach is studied to effectively extract, present and evaluate analytical results. A theoretical study shows the analytical results can be synthesized to determine key performance parameters. It is proposed that the amplification factors at critical speeds can be converted to equivalent logarithmic decrements. Based on the two studies, a new rotordynamic performance diagram is created to present damped modes, critical speeds and relevant acceptance criteria. With this informative diagram, one can quickly and effectively evaluate the acceptability and robustness of multiple design cases. This diagram can also convey the trends of key performance parameters, comparisons between cases, and the sensitivities of key performance parameters to design variables more clearly and concisely. This synthesizing approach and the rotordynamic performance diagram may be useful in modifying an existing design, determining a proper off-design operation range, and investigating rotordynamic issues.","PeriodicalId":143309,"journal":{"name":"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Evaluation of Rotordynamic Performance Within Rotor-Bearing System Design Bounds\",\"authors\":\"Zhusan Luo, Carl L. Schwarz\",\"doi\":\"10.1115/gt2021-60301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a study on the effective evaluation of rotordynamic performance for multiple analysis cases within rotor-bearing system design bounds. The variations in rotordynamic design variables and operating conditions are usually considered in a rotordynamic analysis. This can provide useful information about the current design, potential for modification, and the capability of off-design operation. Typical design bounds of a tilting pad journal bearing are discussed to show the complexity of multiple design cases and a demand for a method to postprocess the analytical results.\\n Rotordynamic performance is conventionally assessed by examining undamped critical speed maps, damped modes, stability, and unbalance responses. Evaluating rotordynamic performance for multiple cases is a tedious task for both rotordynamicists and reviewers. A new approach is studied to effectively extract, present and evaluate analytical results. A theoretical study shows the analytical results can be synthesized to determine key performance parameters. It is proposed that the amplification factors at critical speeds can be converted to equivalent logarithmic decrements. Based on the two studies, a new rotordynamic performance diagram is created to present damped modes, critical speeds and relevant acceptance criteria. With this informative diagram, one can quickly and effectively evaluate the acceptability and robustness of multiple design cases. This diagram can also convey the trends of key performance parameters, comparisons between cases, and the sensitivities of key performance parameters to design variables more clearly and concisely. This synthesizing approach and the rotordynamic performance diagram may be useful in modifying an existing design, determining a proper off-design operation range, and investigating rotordynamic issues.\",\"PeriodicalId\":143309,\"journal\":{\"name\":\"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-60301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-60301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在转子-轴承系统设计范围内的多工况下转子动力性能的有效评价。在旋翼动力学分析中,通常要考虑旋翼动力学设计变量和工况的变化。这可以提供有关当前设计、修改潜力和非设计操作能力的有用信息。讨论了可倾垫滑动轴承的典型设计边界,以显示多种设计情况的复杂性以及对分析结果后处理方法的需求。旋翼动力性能通常通过检查无阻尼临界速度图、阻尼模式、稳定性和不平衡响应来评估。对于旋翼动力学家和评审人员来说,评估多种情况下的旋翼动力学性能是一项繁琐的任务。研究了一种有效提取、呈现和评价分析结果的新方法。理论研究表明,可以综合分析结果来确定关键性能参数。提出临界速度下的放大因子可以转换为等效的对数减量。在这两项研究的基础上,建立了一个新的转子动力性能图,给出了阻尼模态、临界转速和相关的验收准则。有了这个信息丰富的图表,人们可以快速有效地评估多个设计案例的可接受性和健壮性。该图还可以更清晰、简洁地传达关键性能参数的变化趋势、案例间的比较以及关键性能参数对设计变量的敏感性。这种综合方法和转子动力学性能图可用于修改现有设计,确定适当的非设计工作范围,以及研究转子动力学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Evaluation of Rotordynamic Performance Within Rotor-Bearing System Design Bounds
This paper presents a study on the effective evaluation of rotordynamic performance for multiple analysis cases within rotor-bearing system design bounds. The variations in rotordynamic design variables and operating conditions are usually considered in a rotordynamic analysis. This can provide useful information about the current design, potential for modification, and the capability of off-design operation. Typical design bounds of a tilting pad journal bearing are discussed to show the complexity of multiple design cases and a demand for a method to postprocess the analytical results. Rotordynamic performance is conventionally assessed by examining undamped critical speed maps, damped modes, stability, and unbalance responses. Evaluating rotordynamic performance for multiple cases is a tedious task for both rotordynamicists and reviewers. A new approach is studied to effectively extract, present and evaluate analytical results. A theoretical study shows the analytical results can be synthesized to determine key performance parameters. It is proposed that the amplification factors at critical speeds can be converted to equivalent logarithmic decrements. Based on the two studies, a new rotordynamic performance diagram is created to present damped modes, critical speeds and relevant acceptance criteria. With this informative diagram, one can quickly and effectively evaluate the acceptability and robustness of multiple design cases. This diagram can also convey the trends of key performance parameters, comparisons between cases, and the sensitivities of key performance parameters to design variables more clearly and concisely. This synthesizing approach and the rotordynamic performance diagram may be useful in modifying an existing design, determining a proper off-design operation range, and investigating rotordynamic issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信