整数马尔可夫人工神经网络

E. David, den Bout, T. Miller
{"title":"整数马尔可夫人工神经网络","authors":"E. David, den Bout, T. Miller","doi":"10.1109/IJCNN.1989.118700","DOIUrl":null,"url":null,"abstract":"A massively parallel, all-digital, stochastic digital architecture called TInMANN is described. It performs competitive and Kohonen types of learning at rates as high as 145000 training examples per second regardless of network size. Simulations of TInMANN, both with and without its conscience mechanism activated, demonstrate its effectiveness on a number of example problems.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"TInMANN: the integer Markovian artificial neural network\",\"authors\":\"E. David, den Bout, T. Miller\",\"doi\":\"10.1109/IJCNN.1989.118700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A massively parallel, all-digital, stochastic digital architecture called TInMANN is described. It performs competitive and Kohonen types of learning at rates as high as 145000 training examples per second regardless of network size. Simulations of TInMANN, both with and without its conscience mechanism activated, demonstrate its effectiveness on a number of example problems.<<ETX>>\",\"PeriodicalId\":199877,\"journal\":{\"name\":\"International 1989 Joint Conference on Neural Networks\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International 1989 Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1989.118700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

描述了一种称为TInMANN的大规模并行、全数字、随机数字架构。无论网络大小如何,它执行竞争性和Kohonen类型的学习速度高达每秒145000个训练样本。TInMANN的仿真,无论是否激活了它的良心机制,都证明了它在一些实例问题上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TInMANN: the integer Markovian artificial neural network
A massively parallel, all-digital, stochastic digital architecture called TInMANN is described. It performs competitive and Kohonen types of learning at rates as high as 145000 training examples per second regardless of network size. Simulations of TInMANN, both with and without its conscience mechanism activated, demonstrate its effectiveness on a number of example problems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信