基于改进贝叶斯网络模型的肺癌图像分割检测

A. Bharath, Dhananjay Kumar
{"title":"基于改进贝叶斯网络模型的肺癌图像分割检测","authors":"A. Bharath, Dhananjay Kumar","doi":"10.1109/ICRTIT.2014.6996143","DOIUrl":null,"url":null,"abstract":"User assisted segmentation of lung parenchyma pathology bearing regions becomes difficult with an enormous volume of images. A novel technique using Bayesian Network Model Based (BNMB) Image Segmentation, which is a probabilistic graphical model for segmentation of lung tissues from the X-ray Computed Tomography (CT) images of chest, is proposed. Goal of this work is to present an automated approach to segmentation of lung parenchyma from the rest of chest CT image. This is implemented with help of a probabilistic graph construction from an over-segmentation of the image to represent the relations between the super pixel regions and edge segments. Using an iterative procedure based on the probabilistic model, we identify regions and then these regions are merged. The BNMB is evaluated on many CT image databases and the result shows higher accuracy and efficiency for both segmenting the CT image of lung and also extraction of the Region Of Interest (ROI) from affected CT image.","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An improved Bayesian Network Model Based Image Segmentation in detection of lung cancer\",\"authors\":\"A. Bharath, Dhananjay Kumar\",\"doi\":\"10.1109/ICRTIT.2014.6996143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User assisted segmentation of lung parenchyma pathology bearing regions becomes difficult with an enormous volume of images. A novel technique using Bayesian Network Model Based (BNMB) Image Segmentation, which is a probabilistic graphical model for segmentation of lung tissues from the X-ray Computed Tomography (CT) images of chest, is proposed. Goal of this work is to present an automated approach to segmentation of lung parenchyma from the rest of chest CT image. This is implemented with help of a probabilistic graph construction from an over-segmentation of the image to represent the relations between the super pixel regions and edge segments. Using an iterative procedure based on the probabilistic model, we identify regions and then these regions are merged. The BNMB is evaluated on many CT image databases and the result shows higher accuracy and efficiency for both segmenting the CT image of lung and also extraction of the Region Of Interest (ROI) from affected CT image.\",\"PeriodicalId\":422275,\"journal\":{\"name\":\"2014 International Conference on Recent Trends in Information Technology\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Recent Trends in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2014.6996143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于图像量巨大,用户辅助分割肺实质病理承载区域变得困难。提出了一种基于贝叶斯网络模型(BNMB)的图像分割新方法,该方法是一种从胸部x射线计算机断层扫描(CT)图像中分割肺组织的概率图模型。本研究的目的是提出一种从胸部CT图像中自动分割肺实质的方法。这是通过从图像的过度分割中构建概率图来实现的,以表示超像素区域和边缘段之间的关系。利用基于概率模型的迭代过程,识别区域,然后对这些区域进行合并。在多个CT图像数据库中对BNMB进行了评估,结果表明BNMB在分割肺部CT图像和提取感兴趣区域(ROI)方面具有较高的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved Bayesian Network Model Based Image Segmentation in detection of lung cancer
User assisted segmentation of lung parenchyma pathology bearing regions becomes difficult with an enormous volume of images. A novel technique using Bayesian Network Model Based (BNMB) Image Segmentation, which is a probabilistic graphical model for segmentation of lung tissues from the X-ray Computed Tomography (CT) images of chest, is proposed. Goal of this work is to present an automated approach to segmentation of lung parenchyma from the rest of chest CT image. This is implemented with help of a probabilistic graph construction from an over-segmentation of the image to represent the relations between the super pixel regions and edge segments. Using an iterative procedure based on the probabilistic model, we identify regions and then these regions are merged. The BNMB is evaluated on many CT image databases and the result shows higher accuracy and efficiency for both segmenting the CT image of lung and also extraction of the Region Of Interest (ROI) from affected CT image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信