隐私友好型增强民主的同态加密

Matthieu Brabant, Olivier Pereira, Pierrick Méaux
{"title":"隐私友好型增强民主的同态加密","authors":"Matthieu Brabant, Olivier Pereira, Pierrick Méaux","doi":"10.1109/MELECON53508.2022.9843009","DOIUrl":null,"url":null,"abstract":"Augmented democracy is a proposal to expand the ability of citizens to participate in the democratic decision process through a digital twin. Artificial intelligence would be used to diminish the load of citizens by recommending decisions based on expert knowledge and the citizens learned preferences. This paper explores the possibility to design citizen ’s avatars in a privacy preserving way. We formulate the problem as a Collaborative Filtering recommendation system and solve it with Matrix Factorisation. We use Homomorphic Encryption to build two privacy-preserving protocols and evaluate the practicality of our solutions with a toy example using the HEAAN encryption library.","PeriodicalId":303656,"journal":{"name":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Homomorphic Encryption for Privacy-Friendly Augmented Democracy\",\"authors\":\"Matthieu Brabant, Olivier Pereira, Pierrick Méaux\",\"doi\":\"10.1109/MELECON53508.2022.9843009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmented democracy is a proposal to expand the ability of citizens to participate in the democratic decision process through a digital twin. Artificial intelligence would be used to diminish the load of citizens by recommending decisions based on expert knowledge and the citizens learned preferences. This paper explores the possibility to design citizen ’s avatars in a privacy preserving way. We formulate the problem as a Collaborative Filtering recommendation system and solve it with Matrix Factorisation. We use Homomorphic Encryption to build two privacy-preserving protocols and evaluate the practicality of our solutions with a toy example using the HEAAN encryption library.\",\"PeriodicalId\":303656,\"journal\":{\"name\":\"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELECON53508.2022.9843009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON53508.2022.9843009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

增强民主是指通过数字孪生体扩大公民参与民主决策过程的能力。人工智能将通过根据专家知识和公民学习偏好推荐决策来减少公民的负担。本文探讨了以隐私保护方式设计公民头像的可能性。我们将该问题描述为一个协同过滤推荐系统,并利用矩阵分解来解决该问题。我们使用同态加密来构建两个隐私保护协议,并通过一个使用HEAAN加密库的示例来评估我们的解决方案的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homomorphic Encryption for Privacy-Friendly Augmented Democracy
Augmented democracy is a proposal to expand the ability of citizens to participate in the democratic decision process through a digital twin. Artificial intelligence would be used to diminish the load of citizens by recommending decisions based on expert knowledge and the citizens learned preferences. This paper explores the possibility to design citizen ’s avatars in a privacy preserving way. We formulate the problem as a Collaborative Filtering recommendation system and solve it with Matrix Factorisation. We use Homomorphic Encryption to build two privacy-preserving protocols and evaluate the practicality of our solutions with a toy example using the HEAAN encryption library.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信